SQL*Module™ for Ada

Programmer’s Guide

Release 8.0

December, 1997
Part No. A58231-01

ORACLE"

Enabling the Information Age™

SQL*Module™ for Ada Programmer’s Guide

Part No. A58231-01

Release 8.0

Copyright © 1997, Oracle Corporation. All rights reserved.
Primary Author: Jack Melnick

Contributors: Nancy Ikeda, Thomas Kurian, Shiao-yen Lin, Christopher Racicot, Michael Rohan, Gael
Turk.

Graphic Designer: Valarie Moore

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inher-
ently dangerous applications. It shall be licensee’s responsibility to take all appropriate fail-safe, back
up, redundancy and other measures to ensure the safe use of such applications if the Programs are
used for such purposes, and Oracle disclaims liability for any damages caused by such use of the Pro-
grams.

This Program contains proprietary information of Oracle Corporation; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright patent and
other intellectual property law. Reverse engineering of the software is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free.

If this Program is delivered to a U.S. Government Agency of the Department of Defense, then it is deliv-
ered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Programs delivered subject to the DOD FAR Supplement are ‘commercial
computer software' and use, duplication and disclosure of the Programs shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject to
the Federal Acquisition Regulations are 'restricted computer software' and use, duplication and disclo-
sure of the Programs shall be subject to the restrictions in FAR 52..227-14, Rights in Data -- General,
including Alternate 111 (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle SQL*Forms, SQL*Module, SQL*Net, and SQL*Plus are registered trademarks of Oracle Corpora-
tion, Redwood City, California.

SQL*Module, Net8, Oracle7, Oracle7 Server, Oracle8, Oracle8 Server, PL/SQL, Pro*C, and Pro*C/C++ are
trademarks of Oracle Corporation, Redwood City, California.

All other products or company names are used for identification purposes only, and may be trademarks
of their respective owners.

cContents

SENA US YOUT COMMENTES ..ottt ettt e ettt et ettt et et s e st en e e s et ene e eseneeee iX
Pl I AC R ... oo ettt ettt ettt ettt ettt ettt et ee ettt en et et ee s Xi
WhOo Should Read THIS GUITE?eieieie ettt ettt st a e st ae s sba e e s sbe e e s sata e Xii
StANAArdS CONTOIMMIANCEccveie ettt e e et e e s s st e e e s st e e e e bt e s esbbasssabessssbanssabaeesnns Xii
How the SQL*Module Guide IS Organized...........cccooveieiiiecieniiiie e e Xiii
ConVventioNs USEd iN THiS GUIEooeiii ettt sttt e st e s ebaa s s sabae e saaeens Xiv

(N[0 711 0] o IATTR TR Xiv

1 Introduction to SQL*Module

What IS SQLFMOAUIE? ...t st sbe e be st e et e b e earesreenes 1-2
22 To3 1o (10 1 Lo PSR 1-2
PrECOMIPIIETS ...t bbbt b et et b et b e bbbt et beene e 1-3
The Module LaNgUAge CONCEPTccuiiiiiiiiieie ettt st sae e 1-5

SQL*Module as an Interface BUIIAEr..........c.cvviviiiii e 1-8

What Is Supported by SQL*MOAUIE? ...t 1-11

What SQL Statements are Not Supported by SQL*ModUIe?ccoviiiiiniiiiiieicieene 1-11

2 Module Language

LI L=/ o T LU 1 =PSSOSR 2-2
AN EXAMPIE MOAUIE ...ttt et sa et enens 2-2
A Short Example Program iN Ada ... e 2-4
SErUCLUIE OF @ IMIOTUIE ...ttt sre s e beer e e sresneennes 2-7
PrEAMIDIE ...ttt en s 2-8

(OA LYo T B =Tod FoT -1 [0 1T 2-10

Procedure DefiNitioNScccvoiiiic et ne e 2-10
1@ I D T =1 1Y/ 0 1= SR 2-12
SOQL COMMANAS ..ottt ettt st b e s beeat e be s ab e eesbeesbenbeeabensesbesnsesbestbenbesreenns . 2-14
TEXE TN @ IMOAUIE ... e s e et et e s be s tb e st e e st e s be e e e sbeereesreereens 2-14

(7o) 0101 0 1 o | £ PSSR 2-15
aTo [Tor= (o g =T U g1 (= TSP 2-15
STATUS PAlAMETEIS ... ittt b et e b et e s te e et e e s sbesa b e e beeasbeesbeessbeanbeennreeas 2-17

L g 0] gAY LoTSE = o oSSR 2-18
(6@ N1 N1 L O I - 1] =T | S 2-18

SET CONNECTION STateMENTc..oviiiiiiicieiece ettt sttt be et st be st st 2-19
(D] BT O @]\ N = O IS -1 =] = o | PSS 2-19
Y LT A = TS] T Vo S 2-20

ENABLE THREADS ..ottt sttt ettt st st b et e s be st e st et e se et e s ereebeateas 2-20

SQL_CONTEXT DatAltY P . cecveiveeieeriieriesiieieetestesseessesseesesaaeseeesesssessesssesssesseessesssssseseessssseessns 2-21

CONTEXT ALLOCATE ...ttt sttt ettt st stesa et e naenaeaeneensnsannen 2-21

CONTEXT FREE ...ttt ettt et et sttt ettt ae et baens 2-21

MUIti-tasking RESIFICLIONSooiiviiiciceciee e st ere e 2-21
MUIti-taSKING EXAMPIE ..ottt sttt n e e 2-22

3 Accessing Stored Procedures

PLISQL e bR b e e R bR bRt b s £kttt neenenes 3-2
[0To=T o [T = PSSR 3-2
SEOFEA PrOCEAUIES ...ttt ettt sttt bbbt bbbt e et sr e e bt 3-3
] (o] =T o To] 1= T [T ST 3-4
ACCESSING STOFEA PrOCEAUIEScueiiiiiiicie sttt sttt st bbb e e b e e e sbesne s 3-4
Case of Package and Procedure NAMIESccoviiiieieiiresiesiere ettt 3-6
Early and Late BINAINGccooviiiiiiie ittt ne e e e enesneens 3-7
CUISON VANTADIES ... et e st et e s a et e ete e sbesaeesbesreeeesneens 3-9
CUrsor Variable Parameters ...t et 3-9
Allocating a Cursor Variable..........ccvciiiiiiiie e 3-9
Opening @ CUrSOr VariabIe. ... s 3-10
(0 [o Ty T To I W@ UL 10T gV - - o - S 3-11
Restrictions 0N CUrsor Variables ... 3-12
[/ o T 1 1ol © L OSSPSR 3-12

The WITH INTERFACE ClIaUSE.......cco it 3-13

ez 10 0] o] [T OO SOV 3-13
L@ I I T -4 1= OSSR 3-15
The Default WITH INTERFACE ClaUSEcoooiiiieireesee et 3-16
Storing Module Language ProCEAUIES ...t e s 3-18
CoNNECtiNg t0 @ DAtabase.........ccccvviiiiiiiiicce e 3-20

4 Developing the Ada Application

L (0T0 =T] € [8T =SSR 4-2
LT (o] g o =T o | 1T o T SRS 4-2
SQLCODEottt ettt bbbt bbbttt b ettt e e 4-2
Obtaining Error MESSAQE TEXL....cuciiieieeiisiesiesie s e se e eseeses e re s e e e srestesse e seeseeneesaesesnensens 4-3
SQLSTATE ..ttt bbbt bbb bbb bbb b e bbbt bbb 4-3
Obtaining the Number of ROWS ProCeSSEcoiiiiiiiiiiii e 4-6
[P2 T o 1 T o T AN L0 SO 4-6
INAICALOr VAITADIES ... ettt e 4-6
(O1F [£<T0] £ TSRO PP TP PRTUPRTRTOPO 4-8
SPECIHTICALION FIIES.....iiieccc e ettt es e e ere e s e ese e e nesreees 4-8
(O 1L 1 aTo K= W d o 1ot =To U] o TSR 4-9
ATrays as Procedure ATQUIMENTScocoiiiiiee ettt ettt st be bbb e e e ebe e sbesbeneas 4-9
National Language SUPPOIT.......c.ciiieieieie s ste e se e saese e ssessesse e saessestesaeseenseseenasnessennes 4-10

5 Running SQL*Module

SQL*Module INPUL aNd OULPULccviiiiic e sre e 5-2
INPUL SOUFICES ...ttt ettt et e s te s e s tees e stees et e es e nteeneesneeneeaneeneeneeaneesennneens 5-2
OULPUL FITES ...ttt b et b e eb et et b ebeeneebesneebe 5-2
Determining the INPUL SOUFCEcvivieieiecececese et sr e 5-3

INVOKING SQLEMOTUIEcooiiieiiicee st ere ettt r e restebesreneeneene s 5-4
RUNNING the COMPIIET ...t bbb e 5-4

Case Sensitivity in Program Names, Option Names, and Values..........cccccoceeeveivernivninnennnn, 5-5
Listing Options and Default ValUEScccveiviiiiiiin e 5-5

How to Specify Command-Line OPLiONS.........ccoooiiiiiiiiieie e e e 5-6
WALUE LESES ...ttt bbb bbbt bbbttt ettt et n e 5-6
DEfaAUIL VAIUES ...ttt et sttt et sttt 5-7

CoNFIGUIALTON FIIES.... .ot bbbttt e 5-8

T o 10 L] LTSRS 5-8

OULPUL FILES ..ttt bbbt h et b e bt b e e b sb e sb e be e e b ebe e s ebeene et e e ne e 5-9
Source Code OULPUL FIlEcicii et srene s 5-9
] o L=Tof) o= o o 1N =TT =TSSR 5-10
LISTING FIIE ..ttt bt bbb b e et eb bt e ne e 5-10
PLZSQL SOUICE FIIBS ...ttt ettt ettt sttt ettt sb e st e besbe et s re e saestaenee e 5-10
Avoid Default QUIPUL FIIENAMES ..o e 5-10
ComMMANA-LINE OPLIONScuiiiiiiiieee ettt bbbt bbb b enb e e ne e e ebeenes 5-11
AUTO_CONNECT ..ottt ettt b ettt ebe et e b e b et et b e ste e sbenesbeseanas 5-13
BINDING ..ottt bbb bbb s e b st b ettt bt 5-14
CONFIG .ottt b et bt e bt e e b et et et e b e et et et et et et e et ebenenbene et 5-14
ERRORS. ...ttt bbbt R bR E Rt bbb b n bt 5-14
F I P S bbb bR R bbb bbb bt 5-15
INAME .ottt sttt b et s b e s bt b ettt eb et eb et et e et et et e beeeebe et tenaerenaan 5-15
LINAME .ottt bbbt h bRt R bRt bRt n bt n et ne s 5-16
LTYPE .ot bbb bbbt R R e Rt E Rt R bRt b Rt b Rttt n et neen 5-16
IMAPPING ..ottt ettt ettt et s e s et s s es s e b s e b s e b en s b e e ne e ne e 5-16
IMAXLITERAL .ttt sttt bbbttt 5-17
OINAIME ... bbb bbb e bt be et e bt e bt st bt b e bbb n et n et 5-17
L0 10 I I = SOOI 5-18
PINAIME ..ottt bbb bbbt b ettt 5-19
RPC_GENERATE ..ottt ettt ettt bbb 5-19
SELECT _ERROR ..ottt sttt ettt sttt sttt sttt bbbt bt et 5-20
SINAIME ...ttt e b e bbb e bt R bRt R e bbbttt 5-20
STORE_PACKAGE ...ttt ettt ettt sttt ben et 5-20
SQLCHECK ..ottt ettt s b et bt bbb et st e ettt et et et et et ettt rene et 5-21
USERID ...ttt bbbt b et b et b e bbbt b n et e b e 5-21
(ofe]aa] oY1 ITaTo Jr=TaTo Il T o1 51 o PSSR 5-22
AN Example (Module LANQUAGE)cccovieiiiiiiiiei ettt 5-22

6 Demonstration Programs

The SQL_STANDARD PACKAGEceiiiiiiiiiii ettt s sne 6-2
SQLECODE ...ttt 6-2
SQLSTATE ..ottt 6-2

SAMPIE PrOGIAIMS ...ttt ettt b et b e bbb es et b e bt eb e b e st e e ebe e bt ebe st e e e e e . 6-2

vi

= 0] o] S = o 1= S 6-3

Module Language SampPle PrOGIamcoiiiiiiiiieiene e e 6-10
(0= 11 [T o I 0] (o1 (=To I = fo o= (1] - 0TS 6-19
T] o] LN o] o] 1= 1 [0 LS 6-22
DEMOHOST.A oottt bbbt st st b et b e et et et et e e s e be s e be s et et et se et e b tenbns 6-22
DEMUCALSP.A .. .ot bbbt bbbttt et bt 6-40

New Features

LN YA = L (=Y g =] | £ A-2
(@1 g LT N LAV A T (= F A-2

Module Language Syntax

Module Language Syntax DIagramsS........cccccceievrieieiineiesiesiesese e seeseee e seeseesssseesessessessessesesseens B-2
[=T 101] L= SRS B-3
L] 0 OSSR B-3
Procedure DEfINITIONS ..ot et a e re e B-3

WITH INTERFACE CLAUSEoo oottt sttt ettt sttt sttt ss et ba e beebetas B-5

Reserved Words
MOAUIE RESEIVEA WOTTUSoeiiitiie ittt ettt e st e s s e e s s bt e s s ebb e e s sabe e s sabe e e sbeeesereas C-2

SQLSTATE Codes
SQLSTATE COUES ...ttt b bt b et b bbbt bbbt e st n et bt nn et D-2

System-Specific References

System-Specific Aspects Of SQL*MOAUIE..........ccoiiiiiiiiii e E-2
S 0T o] oLo] =Tl @foT 0 0] oY1 [=] -SSR E-2
Character Case in COmMMANG LINESccoiiiiiiiiiiereieses e ere e sne e e E-2
(o Tor: LA To] g o) i | TSSOSO E-2
[T =T Fo T Lol b rq 1=T 1] o TSR E-2
N - O 10 11 01U 1 = E-2
(070 o] 4T UaTo 1N I o -SSR E-2
Ada SQL_STANDARD PACKAJEcvivviuiriirieiesieieseeeneseeseseste e e seessestessessessesassasssssessessessenees E-2

Vii

viii

Send Us Your Comments

SQL*Module™ for Ada Programmer’s Guide, Release 8.0
Part No. A58231-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

electronic mail - infodev@us.oracle.com

FAX - (650) 506-7228. Attn: Information Development
postal service:

Oracle Corporation

Server Technologies Documentation Manager

500 Oracle Parkway

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, and telephone number below.

Preface

This book is a comprehensive user’s guide and reference for SQL*Module, an
Oracle application development tool.

This Guide includes a complete description of Module Language, an ANSI/I1SO SQL
standard for developing applications that access data stored in a relational
database. Module Language uses parameterized procedures to encapsulate SQL
statements. The procedures can then be called from an Ada application.

This Guide also describes how you can use SQL*Module to call PL/SQL
procedures stored in an Oracle database. A number of complete examples using
Module Language, Ada code, and stored database procedures are provided.

Preface xi

Who Should Read This Guide?

Who Should Read This Guide?

This Guide is for systems architects, analysts, and developers who are writing large-
scale applications that access an Oracle Server. Chapter 1 of this Guide can also be
used by managers who need to determine if SQL*Module is an appropriate tool for
a planned project.

To use this Guide effectively, you need a working knowledge of the following
topics:

= applications programming in Ada
« the SQL database language
« Oracle database concepts and terminology

Familiarity with SQL-standard Module Language is not a prerequisite. This Guide
fully documents Module Language.

Standards Conformance

Preface Xxii

SQL*Module conforms to the American National Standards Institute (ANSI) and
International Standards Organization (1SO) standards for Module Language. This
includes complete conformance with Chapter 7 of ANSI document X3.135-1989,
Database Language SQL with Integrity Enhancement.

In addition, SQL*Module conforms to the “Entry SQL” subset of the SQL92
standard, as defined in Chapter 12 of the ANSI Document X3.135-1992.

Note: SQL92 is known officially as International Standard ISO/IEC 9075:1992,
Database Language SQL.

SQL*Module supports the Ada83 language standard for Ada.

Oracle has also implemented extensions to the SQL language and to Module
Language. This Guide describes both the SQL standard Module Language and the
complete set of Oracle extensions. SQL*Module provides an option, called the FIPS
flagger, which flags all non-standard extensions to SQL and to Module Language, as
mandated by the Federal Information Processing Standard for Database Language SQL,
FIPS publication 127-1. This publication is available from

National Technical Information Service
US Department of Commerce
Springfield VA 22161

US.A

How the SQL*Module Guide Is Organized

How the SQL*Module Guide Is Organized

A summary of what you will find in each chapter and appendix follows.
Chapter 1, “Introduction to SQL*Module”

This chapter introduces you to Oracle’s Module Language compiler. You learn
what SQL*Module is, when it is appropriate to use SQL*Module for a project, and
what features the SQL*Module compiler offers. The chapter also provides an
overview showing how to develop an application using SQL*Module.

Chapter 2, “Module Language”

This chapter documents SQL standard Module Language, and also describes the
Oracle extensions to the Module Language standard.

Chapter 3, “Accessing Stored Procedures”

This chapter describes how to use SQL*Module to generate code output files that
contain interface procedures (stubs) used to call PL/SQL procedures stored in an
Oracle database.

Chapter 4, “Developing the Ada Application”

This chapter describes the steps you take to develop an application using
SQL*Module. This chapter also includes a sample application in Module Language.
The Module Language code and the SQL scripts that build the sample database are
listed; they are also available on-line, in the demo directory.

Chapter 5, “Running SQL*Module”

This chapter tells you how to invoke SQL*Module, what input and output files are
required and are generated, and describes all the command-line options.

Chapter 6, “Demonstration Programs”

This chapter describes Ada-specific aspects of using SQL*Module, including
parameter passing conventions and binding of Ada datatypes to SQL datatypes.
This chapter also contains several sample programs that call stored procedures and
Module Language procedures.

Appendix A, “New Features”

This appendix provides lists of new statements and other new features in release
8.0.

Appendix B, “Module Language Syntax”

Preface xiii

Conventions Used in This Guide

This appendix presents the formal syntax of Module Language using syntax
diagrams.

Appendix C, “Reserved Words”

This appendix lists the keywords and reserved words that you cannot use for
names of modules, cursors, procedures, and procedure parameters in a Module
Language application.

Appendix D, “SQLSTATE Codes”
This appendix contains a table of the SQLSTATE codes.
Appendix E, “System-Specific References”

This appendix contains a list of all system-dependent aspects of SQL*Module for
Ada that are mentioned elsewhere in this guide.

Conventions Used in This Guide

Notation

Preface xiv

Important terms being defined for the first time are italicized. In running text,
uppercase is used for SQL keywords and all database objects, such as table and
column names.

Typographic case in examples of host or server language code follows the usual
conventions of the language.

Ada

The style of the Ada Language Reference Manual is generally followed: reserved
words are lowercase, identifiers are uppercase. In running text, reserved words are
bold and identifiers are uppercase. Filenames are lowercase.

PL/SQL

The style of the PL/SQL User’s Guide and Reference is followed. In code examples,
keywords are uppercase, identifiers are lowercase. Names of supplied packages
(for example, DBMS_OUTPUT) are uppercase. In running text, identifiers are
lowercase italic, and keywords and system packages are uppercase.

The following notational conventions are used in example syntax descriptions:

[1 Square brackets indicate that the enclosed items are optional.
When entering the item (on a command line, for example),
you do not type the []'s.

Conventions Used in This Guide

{}

Braces indicate that one, and only one, of the enclosed items is
required.

A vertical bar is used to separate options within brackets or
braces.

An ellipsis indicates that the preceding argument or parame-
ter can be repeated, or, in code examples, that statements or
clauses that are not relevant to the point at hand are missing.

Preface xv

Conventions Used in This Guide

Preface xvi

1

Introduction to SQL*Module

Chapter 1 introduces you to SQL*Module. This chapter answers the following ques-
tions:

What Is SQL*Module?

SQL*Module as an Interface Builder

What Is Supported by SQL*Module?

What SQL Statements are Not Supported by SQL*Module?

Introduction to SQL*Module 1-1

What Is SQL*Module?

What Is SQL*Module?

Background

You use SQL*Module to develop and manage Ada applications that access data in
an Oracle database. It allows an Ada application to access relational databases with-
out using embedded SQL, and without using a proprietary application program-
ming interface.

SQL*Module fulfills three roles in application development:

« It compiles SQL standard Module Language files. A Module Language file con-
tains parameterized procedures that encapsulate SQL statements. These proce-
dures are translated by the SQL*Module compiler into calls to a SQL runtime
library that interacts with the Oracle server.

« It builds Ada code files that contain interface procedures (often called stubs).
This allows your application to call stored procedures in an Oracle database
directly, without requiring an anonymous PL/SQL block. The interface proce-
dures can be time-stamped, so if the stored procedure is recompiled after the
interface procedure was generated, a runtime error occurs.

=« SQL*Module can also generate stored procedures in a database, by compiling
Module Language files, and storing the procedures as part of stored packages,
with the appropriate interface mechanism automatically provided in the pack-
age’s procedure declarations.

The SQL language was designed to operate on entities in a relational database. SQL
was not designed to be a general-purpose programming language, and, in fact, it is
conceptually very different from 3GLs such as Ada or C. Some of these differences
are:

= SQL is a non-procedural database manipulation language, hence it deals with
database objects, such as tables, rows, columns, and cursors. A third-generation
language deals with data structures such as scalar variables, arrays, records,
and lists.

« SQL has a limited ability to express complicated computational operations.

« SQL does not provide the procedural capabilities (such as flow of control state-
ments) that are required to implement efficient programs.

To achieve maximum flexibility when creating large applications, you must com-
bine SQL with host procedural programming language statements. There are sev-
eral ways to do this, and these are discussed briefly in the next section.

1-2 SQL*Module for Ada Programmer’s Guide

What Is SQL*Module?

Precompilers

One way to use a procedural language to access data in a relational database is to
embed SQL statements directly in a program written in a host 3GL such as C or
C++. After the program is coded, you use a precompiler to translate the SQL state-
ments into calls to a runtime library that processes the SQL, and submits the SQL
statements to the database.

See Figure 1-1, “Developing with the Precompilers” for details of this process.

While embedded SQL is very useful, it can have drawbacks when very large appli-
cations are being developed. There are several reasons for this:

« Use of embedded SQL requires study of the technical details of the precompiler.

= SQL code does not follow the syntactic and semantic constraints of the host lan-
guage, and can confuse specialized tools, such as syntax-directed editors and
“lint” programs.

=« When the precompiler processes code that contains embedded SQL, it intro-
duces extra data structures and code in the generated output code, making
source-level debugging more difficult.

« Techniques for error handling and recovery in embedded SQL programs can be
difficult to understand and apply, and subtle bugs can arise when developers
do not appreciate all the problems involved in embedded SQL error handling.

Figure 1-1 shows how you develop applications using the Oracle precompilers.

Introduction to SQL*Module 1-3

What Is SQL*Module?

Figure 1-1 Developing with the Precompilers

Source File with Included Files
Embedded SQL (SQLCA, ..)

; ;

Oracle Precompiler

Syntactic and
l Semantic Checking

Host Language
Program Files

'

Host Language Oracle8
Compiler Server

'

; ; SQL Library
Object Files (SOLLIB)

Host Linker

Application <

Data

1-4 SQL*Module for Ada Programmer’s Guide

What Is SQL*Module?

The Module Language Concept

The ANSI SQL standards committee defined the embedded SQL standard in two
steps. A formalism called Module Language was defined, then the embedded SQL
standard was derived from Module Language.

Using Module Language is very straightforward: place all SQL code in a separate
module, and define an interface between the module containing the SQL code and
the host program written in Ada. At the most concrete level, the interface simply
consists of

« astandard way of calling Module Language procedures from Ada.
« astandard way to return error and warning information

« specification of conversions between SQL datatypes (such as DOUBLE PRECI-
SION or SMALLINT) and host language datatypes or derived types defined in
a standard package in Ada

It is also possible to develop more abstract interfaces between the host language
and Module Language. One example of this is the SAMeDL (SQL Ada Module
Description Language) developed at Carnegie Mellon and the Software Engineer-
ing Institute.

Figure 1-2shows how you would develop an application using SQL standard Mod-
ule Language.

Introduction to SQL*Module 1-5

What Is SQL*Module?

Figure 1-2 Developing with Module Language

Ada Application
Developer

SQL Application
Developer

COMPILATION

Compilation and
Semantic Checking

ApSpIication Module Language
ource Procedures
Files
SQL*Module
Compiler
Specification Host Language
Files Generated Code
v v v
Ada Compiler

'

0—tl

Oracle8

Server

1-6 SQL*Module for Ada Programmer’s Guide

ORACLE_SQLLIB L > Ada Runtime SQL Library
Package Library (SQLLIB)
Host Linker
- ™
Application
<
Data
N~ -

What Is SQL*Module?

A Module Language compiler such as SQL*Module generates a call-level interface
to procedures defined within a module, allowing them to be called like any other
host language procedure. Details of the implementation of these procedures are hid-
den from the application.

The most immediate benefit of this approach is specialization. By separating SQL
and the host language, an application developer can focus on using the host lan-
guage to perform application tasks, and a database developer can focus on using
SQL to perform database tasks.

The developer of the application does not need to know SQL. The procedures to be
called can be treated as canned routines that return variables of well defined
datatypes in the host language. Error handling becomes straightforward, since all
module procedures can return a single error indicator.

Figure 1-3 shows the operation of SQL*Module when it is used to compile SQL
standard modules. The module file contains a preamble, defining the host 3GL to
be Ada, and two simple procedures in Module Language. When SQL*Module com-
piles this module, it produces two output files: a source code output file, that con-
tains calls to the runtime library SQLLIB that do the work of accessing the
database, and a specification file that declares the procedures in the source code file.

You include the specification files in the host application code that calls the module
procedures, using the appropriate language-specific mechanism.

Introduction to SQL*Module 1-7

SQL*Module as an Interface Builder

Figure 1-3 Compiling a Module

Specifications File (Output)

Wth Oracle_Sqgllib; use Oracle_Sqgllib;
with SQ._STANDARD;
Package enp_rec_nod is

procedure set_comm(enp_nunber: in sql_standard.int;
new_conm in sqgl_standard.real;
SQLCCDE: out sql _standard. sql code_type);

Module File (Compiled) sgl _001 : constant string :=
" UPDATE EMP SET COMME: NEW COWM WHERE EMPNO = : EMP_NUMBER “;

procedure get_nane(enp_nunber: in sql_standard.int;
LI\DJJ_EGirrpAa;ec_nDd / enp_nane: out sql _standard. char;

sgl state: out sqgl _standard. sql state_type);
AUTHCRI ZATI ON scott sgl _002 : constant string :=

"SELECT ENAME | NTO : EMP_NAME FROM EMP" &
"WHERE EMPNO = : EMP_NUMBER ";
end enp_rec_nod;

procedure set_comm (
cenp_nunber | NTEGER,
: new_conm REAL,

SQLCODE) ;

UPDATE enp SET conme : new _conm

VHERE enmpno = : enp_nurber ; Source Code Output File (Output)

procedure get_nane (
cenp_nunber | NTEGER,
:enp_nanme CHARACTER(11),
SQLSTATE) ;

with Oracle_Sqgllib; use Oracle_Sqgllib;

with enp_rec_nod; use enp_rec_nod;

with SQL_STANDARD, use SQ._STANDARD;

package body enp_rec_nod is

use SQL_STANDARD. CHARACTER_SET;

SELECT enare | NTO : enp_nane procedure set_comm(enp_nunber: in sql_standard.int;
FRCM enp new_comm in sqgl_standard.real;
WHERE enpno = - enp_nunber; SQLCCDE: out sql _standard. sql code_type) is
sgl stm: sql exd;

begi n

end set_comm
procedure get_nane(enp_nunber: in sql_standard.int;
enp_nane: out sql _standard. char;
sgl state: out sqgl_standard.sqlstate_type) is
sgl stm: sql exd;
SQOCDE : sgl _standard. sql code_type := 0;
begi n

end get_nare;
end enp_rec_nod;

SQL*Module as an Interface Builder

In addition to its role as a Module Language compiler, SQL*Module can also build
host language interfaces to procedures that are stored in an Oracle database.

1-8 SQL*Module for Ada Programmer’s Guide

SQL*Module as an Interface Builder

Figure 1-4 shows schematically how SQL*Module functions as an interface builder.
The compiler extracts the interfaces to stored procedures, and creates an Ada out-
put file that contains calls to the procedures. YourAda application then accesses the
stored procedures in the database by calling these interface procedures.

When you create interface procedure files (output files that contain interface proce-
dures for calling stored procedures), you can choose either early binding or late bind-

ing.

The early binding option creates a time stamp in the interface procedure for the
time that the stored procedure was last compiled. If the stored procedure has been
recompiled after the interface procedure was generated, a runtime error is gener-
ated when the interface procedure is called from the host application.

The late binding option calls the stored procedure through an anonymous PL/SQL
block, and no time stamp is used. See "Early and Late Binding" on page 3-7 for
more information about binding.

Introduction to SQL*Module 1-9

SQL*Module as an Interface Builder

Figure 1-4 SQL*Module as an Interface Builder

Application
Developer

PL/SQL
Developer

Application PL/SQL

Source Files Stored Procedures

COMPILATION
SQL*Module

Compiler Derive Interface
Procedures from
l l Stored Procedures
Specification Host Language
Files Interface Program Files
v v v
Ada Oracle8
Compiler Server
ORACLE_SQLLIB|_,, [Ada Runtime SQL Library
Package Library (SQLLIB)

'

Host Linker
~ ™
Procedure
Application Calls
<
Data
N— o

1-10 SQL*Module for Ada Programmer’s Guide

What SQL Statements are Not Supported by SQL*Module?

What Is Supported by SQL*Module?

SQL*Module supports international standards for Module Language. Refer to the
Preface to this Guide for more information about supported standards. In addition,
Oracle has extended the current standard in several ways. For example, datatype
conversions between Oracle datatypes and Ada datatypes are defined, comments
can be used in a module, and so forth. Chapter 2, “Module Language” describes
the Module Language capabilities of SQL*Module in detail. A compile time option,
the FIPS flagger, is available to flag use of non-standard extensions to Module Lan-
guage and to SQL.

In addition to the complete Module Language standard, SQL*Module also pro-
vides a way for a host application to access PL/SQL stored procedures in an Oracle
database. If a package exists in an Oracle database that contains procedures, you
can use SQL*Module to build interface procedures corresponding to the PL/SQL
procedures in the package. Thus the application can call the stored procedures
directly.

SQL*Module generates code and specification files that can be compiled with the
Ada compiler.

You can compile your stored procedures or modules to get an interface procedures
file and call the modules directly from an Ada host program.

What SQL Statements are Not Supported by SQL*Module?

« DDL (Data Definition Language) is not supported.

« DML (Data Manipulation Language) statements other than SELECT, UPDATE,
DELETE, and INSERT, are not supported.

= Transaction control statements other than COMMIT and ROLLBACK, and
CONNECT and DISCONNECT are not supported.

Introduction to SQL*Module 1-11

What SQL Statements are Not Supported by SQL*Module?

1-12 SQL*Module for Ada Programmer’s Guide

2

Module Language

This chapter describes SQL standard Module Language, including Oracle’s exten-
sions to standard Module Language. It discusses the following topics:

« The Module

« Structure of a Module
« SQL Datatypes

« SQL Commands

« TextinaModule

« Indicator Parameters

« Status Parameters

= CONNECT Statement
= DISCONNECT Statement
« Multi-tasking

« Multi-tasking Example

This chapter does not cover the use of SQL*Module to provide interfaces to stored
procedures. See Chapter 3, “Accessing Stored Procedures” for information about
calling stored procedures from a host application.

Module Language 2-1

The Module

The Module

A module is a single file that contains
« introductory material, in a preamble

= optional cursor declarations for use by queries that can return multiple rows of
data

« definitions of procedures to be called by the host application

The easiest way to see how a module is constructed is to look at an example. The
small module below contains a cursor declaration, procedures that open and close
the cursor, and a procedure that uses the cursor to fetch data from the familiar EMP
table. Two consecutive dashes (- -) begin a comment, which continues to the end of
the line. Case is not significant.

An Example Module

-- the preanbl e (contai ns three cl auses)
MIDULE EXAMPLEL MDD -- Define a nodul e naned exanpl el_nod.
LANGAGE Ada -- The procedures are conpiled into
-- Ada, and called froman
-- Ada application.

AUTHORIZATION SCOTT/TIGER — Use Scott's tables.
- His password is "tiger”
- (the password does not have to
- be specified in the module file).

— Declare a cursor for a SELECT statement that
— fetches four columns from the EMP table.
—dept_number will be specified

—inthe procedure that opens the cursor.

DECLARE cursorl CURSOR FOR
SELECT ename, empno, sal, comm
FROMemp
WHERE deptno = :dept_number

— Define a procedure named "open_cursorl" to open the cursor.
— Aftter the procedure name is a comma-separated parameter list
—enclosedin()'s.

2-2 SQL*Module for Ada Programmer’s Guide

The Module

PROCEDURE open_cursor1 (
:dept _nunber | NTEGER
SQ.QXE) ;

CPEN cursor1;

-- The "fetch_enp_data" procedure gets data fromthe cursor.
-- SQAEWII return as 100 when there

-- is no nore data.

PROCEDURE fetch_enp_data (

: enpno | NTECGER,

: enpnane VARCHAR2(10) ,
:sal REAL,

: comm ssi on REAL,
:commind SVALLI NT,
Seleer=F

-- the SQL command is a FETCH on the cursor
FETCH cursor1
I NTO : enpnane,
: enpno,
1sal,
: commi ssi on | NDI CATCR : commi nd;

-- Define a procedure to close the cursor.
PROCEDURE cl ose_cursorl (SQQXE);
CLCBE cursor 1;

-- (onnect to a dat abase
PROCEDURE do_connect (

: dbnane VARCHAR2(12) ,
: user nane VARCHAR2(12) ,
: passwd VARCHAR2(12) ,
SeXeorzF

QONNECT TO : dbnane USER : user name USI NG : passwd;
-- D sconnect
PROCEDURE do_di sconnect (SQLCDE);

D SOONNECT QURRENT;

Module Language 2-3

The Module

Note: If you are familiar with the syntax of SQL89 Module Language, you should
note that the newer SQL92 syntax is used in this example. This includes parenthe-
ses around a comma-separated parameter list, colons before parameters, and use of
the INDICATOR keyword. This syntax is supported by the current release of
SQL*Module, and is used throughout this Guide.

In this example, the LANGUAGE clause (in the second line of the module) specifies
“Ada”. This module will be compiled into Ada code. For SQL*Module, this clause
is optional. When present, it is, in effect, a comment.

When SQL*Module compiles this module, it transforms the procedures into Ada
language procedures that open the cursor and call library routines to fetch the data.
SQL*Module also generates a package specification file, which must be compiled
into the Ada library and referenced in the host application using a with context
clause. See Chapter 5, “Running SQL*Module” in this Guide for information on
running SQL*Module, and Chapter 6, “Demonstration Programs” for information
about Ada specification files.

A Short Example Program in Ada

To complete the example, a short Ada program that calls the procedures defined in
the module file in "An Example Module" on page 2-2 follows.

-- Include TEXT_I Q SQL_STANDARD and EXAMPLEL_MD package specs.

with
SQ._STANDARD,
TEXT_IQ
EXAMPLEL_MD,
use
SQ._STANDARD,

-- Define the nai n procedure.

procedure EXAMPLEL DRV i s

-- Instantiate new packages for 1/0O on SQ_STANDARD dat at ypes.
package STDINI 1Ois
new text _io.integer_i o(SQL_STANDARD | NT);
use SIDINT_1Q

package SQOTE 1Ois
new text _io.integer_i o(SQL_STANDARD SQLAE TYPE) ;

2-4 SQL*Module for Ada Programmer’s Guide

The Module

use SAAXE I1Q

package STD FLOAT 1Ois
new text _io.float_i o(SQ_STANDARD REAL) ;
use STD FLOAT 1Q

-- Begin with declarations of all programvariabl es,
-- including paraneters for the nodul e procedures.

SERV CE_NAME :ostring(1..12)

;= "INSTL ALIAS ";
USERNAME :ostring(1..12)

;= "SaOT "
PASSWIRD :ostring(1..12)

= "TIE&ER
DEPT_NUMBER : SQ_STANDARD. | NT;
EMPLOYEE_NUMBER : SQ_STANDARD. | NT;
BEMPLOYEE_NAME : string(1l..10);
SALARY : SQ_STANDARD. REAL;
QOW SSI AN : SQ_STANDARD. REAL;
QOWL I ND : SQ_STANDARD. SMALLI NT;
SQOIE : SQ_STANDARD SQ QTE TYPE
LENGTH : integer;
QONNECT_ERRCR . exception;
SQACTE FRRR . exception;

begi n

-- Gl a nodul e procedure to connect
-- to the Oacle server.
EXAMPLEL_MID. DO GONNECT
(SERV CE_NAME, USERNAME, PASSWIRD, SQLGIB);

-- Test SQQAXE to see if the connect succeeded.
if SQOXE /=0 then
rai se GONNECT_ERRCR
end if;

TEXT_| Q NEWLINK(2) ;
-- Get an input val ue fromuser to use

-- in opening the cursor.
TEXT_| Q PUT("Enter departnent nunber: ");

Module Language 2-5

The Module

STD I NT_| Q GET(CEPT_NUVBER) ;
TEXT | Q NEWLI NE,

-- @Gl | the nodul e procedure to open the cursor.
-- You open the cursor using the input paraneter (dept_nunber).
EXAMPLEL MDD GPEN AURSCRL(DEPT_NUMBER SQ.AXE);
-- If SQQGXE indicates error, call exception handl er.
if SQOE < 0 then
rai se SQOIE ERRCR
end if;

TEXT_|Q PUT_LINK"Ewployee |D Nunber Salary GCommission");
TEXT I QPUT("---mm o mmm e e ");

-- @Gl the FETCH procedure in a loop, to get
-- the enpl oyee data.
| oop
EXAMPLEL MOD FETCH BEMP DATA
(EMPLOYEE_NUMBER
EMPLOYEE_NAME,
SALARY,
QoW SS QN
oW I ND,
SQATH);

TEXT_| Q NEWLI NE

-- Wien SQLAGE = 100, no nore rows to fetch.
exit when SQLOE = 100;

-- Wen SQLOXE | ess than 0, an error occurred.
if SQQAE < 0 then
rai se SQOIE ERRCR
end if;

TEXT | Q PUT(st ri ng(EMPLOYEE NAME)) ;
STD | NT_| Q PUT(EMPLOYEE NIMBER, WDTH => 9);
STD FLOAT | Q PUT(SALARY, FORE => 6, AFT => 2, BXP => 0);

if COMIND = 0 then
STD FLOAT IQPUT(COM SS ON FCRE => 9, AFT => 2, BXP => 0);
el se
TEXT_I Q PUT(" Nl ™)
end if;
end | oop;

2-6 SQL*Module for Ada Programmer’s Guide

Structure of a Module

TEXT_| Q NEWLINK2);

-- @Gl the procedure to close the cursor.
EXAMPLEL_MID. A_.CBE_ AURSCRL(SQLCE) ;

-- Gl the procedure to di sconnect.
EXAMPLEL_MID. DO DI SOONNECT(SQLQTDE) ;

-- Handl e the error exception.

except i on
when SQLOTE ERRR =>
TEXT_| Q NEWLINH 2) ;
TEXT_IQPUT("Eror fetching data, SLQQXE returns ");

PUT(SQLAXE) ;
TEXT 1 Q NEWLI NK(2);

when CONNECT ERR(R =>
TEXT_| Q PUT("Connect failure to " &
string(SERV CE_ NAME)) ;
TEXT_| Q NEWLINH 2) ;

end EXAMPLEL DRV;

This example demonstrates several important points about SQL*Module:

« The types of the parameters in the module procedures are SQL datatypes, for
example SMALLINT and REAL, not Ada datatypes.

« Parameters are passed to the generated output code procedures in the normal
way. Refer to Chapter 6, “Demonstration Programs” for specific information
concerning parameter passing conventions.

« Theerror status of a call is returned in the SQLCODE or SQLSTATE parameter.
There must be a SQLCODE or SQLSTATE status parameter somewhere in the
parameter list of each Module Language procedure. See the section "Status
Parameters" on page 2-17 for more information.

Structure of a Module

This section is an informal guide to Module Language syntax, including Oracle’s
extensions to the language. See Appendix B to this Guide for a formal description
of Module Language syntax.

Module Language 2-7

Structure of a Module

A modaule is contained in a single file and consists of
« apreamble
= zero or more cursor declarations

« one or more procedure definitions

Preamble

The preamble is a set of clauses at the beginning of a module file that describes the
module. The clauses are

« the MODULE clause
« the LANGUAGE clause
« the AUTHORIZATION clause

MODULE Clause

The MODULE clause gives a name to the module. The argument is the module
name, which must be a legal SQL identifier.

Note: A SQL identifier is a string containing only the 26 letters A through Z, the
digits 0 through 9, and the underscore ("_"). The identifier must start with a letter,
and cannot be longer than 30 characters (18 characters to comply with the SQL89
standard). You can use lowercase letters (a..z), but a SQL identifier is not case sensi-
tive. So, the identifiers “THIS_IDENTIFIER” and “this_identifier” are equivalent.
The characters’$’ and’#’ are also allowed in a SQL identifier, but you should avoid
using them, as they have special meaning in many languages and operating sys-
tems.

The module name must be supplied. The module name must be the same as the
name of the Ada library unit that you use when you store the Ada-compiled output
in your Ada library.

LANGUAGE Clause

The LANGUAGE clause specifies the target language. It takes one argument — the
language name, which must be Ada (case is not significant).

The LANGUAGE clause is optional in SQL*Module. See Chapter 5, “Running
SQL*Module” for more information about running SQL*Module.

2-8 SQL*Module for Ada Programmer’s Guide

Structure of a Module

AUTHORIZATION Clause

The AUTHORIZATION clause is required. This clause can determine, or help to
determine, the database and schema that SQL*Module uses at compile time.

The argument to the AUTHORIZATION clause can take one of four forms:
« the username: scott

- scott

« the username plus a password, the two separated by a slash: scott/tiger

- scott/tiger

« the username plus a database to connect to:

scott @i nstance_alias | net8 connection_string}

« afull specification, consisting of the username, a password, and the database to
connect to: scott/tiger@{instance_alias | net8 connection_string}

- scott/tiger@instance_alias | net8 connection_string}

The instance_alias is an alias containing a database name defined in the
tnsnames.ora file. For more information, talk to your database administrator, or see
the manual Net8 Administrator’s Guide.

If you do not include the password in the AUTHORIZATION clause, you can spec-
ify it when you run SQL*Module, using the USERID command line option. If you
do not specify a USERID value that contains a password, SQL*Module prompts
you for a password. If a database name is not supplied, SQL*Module connects
using the default database for the specified user.

Note: For security reasons, omit the password in the SQL*Module or in any config-
uration file. You will be prompted for the password at runtime.

An application that calls module procedures is in effect submitting SQL cursor dec-
larations and SQL statements to Oracle for processing at runtime. The application
runs with the privileges of the user executing the application, not the schema speci-
fied either in the AUTHORIZATION clause or at runtime, when the Module Lan-
guage code was compiled by SQL*Module.

So, when the application is executed, the user must be able to connect to the data-
base using the same schema as that specified when the modules were compiled, in
order to guarantee access to all database objects referenced in the modules.

Module Language 2-9

Structure of a Module

Cursor Declarations

When a query can return multiple rows of data, you must declare a cursor for the
statement. There are two different kinds of cursor that you can use in Module Lan-
guage. You can declare an ANSI-standard cursor in your module file, and write
module language procedures to OPEN the cursor, FETCH from it, and CLOSE it.
Or, you can use a cursor variable. Cursor variables are described in "Cursor Vari-
ables" on page 3-9.

Using a cursor, you retrieve data one row at a time using the SQL FETCH com-
mand. Standard cursors are established in Module Language using the DECLARE
CURSOR statement.

Note: The cursor name is a SQL identifier; it is not a procedure name. So, the cursor
name does not need to be a valid Ada identifier.

The SQL statement in a DECLARE CURSOR clause must not include an INTO
clause. The INTO clause is used in the FETCH command in the procedure that ref-
erences the cursor.

You cannot use parameters when you declare a standard cursor. A placeholder is
used instead. Placeholders in a cursor declaration must correspond by name to the
parameters in the procedure that opens the cursor.

Note the way the variable dept_number is used in the following module fragment,
taken from the example used earlier in this chapter:

DEALARE cursorl ARSCR FCR
SH ECT enane, enpno, sal, conm
FROM enp
WHERE dept no = : dept _nunber

PROCEDURE open_cursor1 (:dept_nunmber | NTEGER SQQOXE);
CPEN cursor 1;

The cursor declaration is NOT terminated with a semicolon. If you do so, SQL*Mod-
ule generates a syntax error.

Caution: If the application consists of several modules, a cursor cannot be declared
in one module, then referenced in another. Nevertheless, cursor names must be
unique across all modules in the application.

Procedure Definitions
A procedure definition consists of a

« procedure name

2-10 SQL*Module for Ada Programmer’s Guide

Structure of a Module

« parameter list

« single SQL statement

Procedure Name

The procedure name is a SQL identifier, and should also be a legal Ada identifier.
Procedure names must be unique in the application.

Each procedure in a module must have a distinct name. The procedure name space
extends over all modules of an application, so when the application uses more than
one module, each procedure must still have a distinct name.

Parameter List

The parameter list contains one or more formal parameters. Each parameter must
have a distinct name, which is a SQL identifier. One of the parameters must be a sta-
tus parameter: SQLSTATE or SQLCODE. It can appear anywhere in the parameter
list. You can include both. See "Status Parameters" on page 2-17 for more informa-
tion about status parameters.

SQL92 Syntax
In SQL89 Module Language, you defined a procedure using the syntax

PROCEDURE proc_nane
<param 1> <dat at ype_1>
<par am 2> <dat at ype_2>
SQAATE
<sql _st at enent >;

where <param_n> is a formal parameter name and <datatype_n>is a SQL
datatype. Following the SQL92 standard, SQL*Module allows the syntax

PROCEDURE proc_nane (
: <par am 1> <dat at ype_1>,
: <par am 2> <dat at ype_2>,
SQSTATE | SQQIE);
<sgl _st at enent >;

where the parameter list is surrounded by parentheses, and parameters are sepa-
rated by commas.

Note: You cannot mix SQL89 and SQL92 syntax. If you separate the elements of the
parameter list using commas, you must also place parentheses around the parame-
ter list.

Module Language 2-11

SQL Datatypes

When SQL*Module generates the output procedures, the formal parameters appear
with the same names, and in the same order, as they appear in the module proce-
dure. You can use the parameter access conventions appropriate for the Ada lan-
guage when calling the output procedure from the application. Thus Ada
programmers can use hamed parameter association in place of, or in addition to,
positional parameter association.

SQL Datatypes

Table 2-1 lists the SQL and Oracle datatypes that you can use in a module parame-
ter list.For more information about arrays, see "Arrays as Procedure Arguments" on
page 4-9.

2-12 SQL*Module for Ada Programmer’s Guide

SQL Datatypes

Table 2-1 Datatypes

SQL Datatype

Meaning

CHARACTER single character

CHARACTER(L) character string of length L bytes

DOUBLE PRECISION approximate numeric

INTEGER exact numeric, no fractional part

REAL approximate numeric

SMALLINT exact numeric, no fractional part, equal to or smaller

in range than INTEGER

Oracle Datatype

VARCHAR2(L) variable-length character string of length L bytes
SQL*Module Datatypes:
SQL_CURSOR cursor variable type

SQL_CONTEXT
ARRAY(N) OF SQL_CURSOR
ARRAY(N) OF CHARACTER
ARRAY(N) OF CHARACTER(L)

ARRAY(N) OF DOUBLE PRECI-
SION

ARRAY(N) OF INTEGER
ARRAY(N) OF REAL
ARRAY(N) OF SMALLINT
ARRAY(N) OF VARCHAR2(L)

task context

Arrays of SQL Datatypes shown above. N is the
number of elements.

Note:

CHARACTER can be abbreviated CHAR. INTEGER can be abbreviated INT.

The SQL standard for Module Language allows the use of only a subset of the SQL

datatypes for Ada.

Note: All parameters for Module Language procedures must be scalars, arrays, or
strings. Records and access types are not supported.

Module Language 2-13

SQL Commands

SQL Commands

Module Language supports the following SQL statement:

= ALLOCATE

« CLOSE

« COMMIT

= CONNECT TO

« CONTEXT ALLOCATE
« CONTEXT FREE

« DELETE

« DISCONNECT

« ENABLE THREADS

« FETCH

= INSERT

« OPEN

« ROLLBACK

« SELECT

« SET CONNECTION
« UPDATE

The DELETE and UPDATE commands may be either searched (the normal mode)
or positioned (using the WHERE CURRENT OF <cursor_name> clause). You can
use the OPEN command only for ANSI-standard cursors. You must open cursor
variables on the Oracle Server, using PL/SQL code.

Text in a Module

In general, Module Language is not case sensitive. You can enter keywords and
identifiers in any mixture of uppercase and lowercase. Case is significant, however,

in character string literals.

Text in a module file is free form. White space (spaces, tabs, and new lines) can be
placed anywhere in the file to improve readability. The only exception to this is that
identifiers, keywords, and string literals cannot be continued to a new line.

2-14 SQL*Module for Ada Programmer’s Guide

Indicator Parameters

Comments

The maximum length of a line in a module is 512 characters.

SQL*Module allows comments in a module file. You can place comments anywhere
that white space can appear, except in string literals.

There are two comment styles: SQL-style comments and C-style comments. A SQL-
style comment starts with two consecutive dashes, which can appear anywhere on
a line, and ends at the end of the line. For example:

-- This is a SQ(or Ada)styl e coment.
-- For multiline comments, you nust place the comrent
-- dashes on each |ine.

A C-style comment begins with a slash immediately followed by an asterisk (/*),
and ends at the next occurrence of an asterisk immediately followed by a slash (*/).
C-style comments can span more than one line. C-style comments cannot be nested.

The following example demonstrates the C-style comment:

/*

This coment style is often used to
* introduce a procedure.
*/

Indicator Parameters

You use indicator parameters to set the null/not null status of another (associated)
parameter, or to “indicate” if a column value retrieved on a query was null. In the
module procedure parameter list, an indicator parameter always has a SMALLINT
type. In the SQL statement, the indicator parameter follows the associated parame-
ter, with no comma separation. The SQL92 standard allows the keyword INDICA-
TOR to be used to separate the indicator parameter and its associated parameter.

In the following example, grade_indic is an indicator parameter:

PROCEDURE get _grade (

1 grade REAL,
:grade_indic SMVALLI NT,
: ¢l ass_nunber | NTEGER
:student id | NTEGER
SQOTH);

SELECT grade
INTO : grade | NO CATCR : grade_indic

Module Language 2-15

Indicator Parameters

FROM enr ol | nent
WHERE cl ass_no = :class_nunber AND student _id = :student_id;

Following the SQL89 standard, the SELECT statement above would be written
without the INDICATOR keyword, as follows:

SEH ECT grade
INTO : grade :grade_indic
FRCM enr ol | nent
WHERE cl ass no = :class_nunmber AND student id = :student id;

SQL*Module allows both uses of indicator parameters.

When an indicator parameter is returned from a procedure (an OUT parameter), as
in the query example above, its returned value has the following meanings:

-1

The Oracle column or expression is null. The value of the associated parameter
(grade in this example) is indeterminate.

0
Oracle assigned a column or expression value to the associated parameter.
>0

For character data, Oracle passed a truncated column value in the associated
parameter. The value of the indicator parameter shows the original length of the
value in the database column.

When indicator parameters are passed as IN parameters, you must set the value in
your Ada program. A value of -1 means that Oracle will assign null to the column
(regardless of the value of the associated parameter), and a value of zero or greater
means that Oracle will use the value of the associated parameter in the UPDATE or
INSERT command. Positive values greater than zero have no special meaning; they
are equivalent to zero.

Caution: If you try to assign a null to a database column that has the NOT NULL
constraint, an Oracle error is returned at runtime.

The following code fragment shows an Ada driver that calls a Module Language
procedure with a null indicator parameter value:

w th SQ_STANDARD

procedure DRV is
SQOE : SQ_STANDARD SQ QCTE TYPE,
BEMPLOYEE : string(l..10) := "SQOIT "

2-16 SQL*Module for Ada Programmer’s Guide

Status Parameters

GOMW SS ON @ SQL STANDARD. REAL @ = 2000. 0;
COMIND : SQ_STANDARD SMALLINT : = -1;
begi n

UPDATE_ COMM SSI ONCEMPLOYEE, GOWMSS N GOMM I ND, SQLCTDE) ;

end;
The corresponding Module Language procedure is:

PROCEDURE updat e_cormmi ssi on (
: enpl oyee_nane VARCHARZ2(10),
: comm ssi on REAL,
:commind SVALLINT,
SQOTH);

UPDATE enp SET comm = : conmi ssi on | ND CATCR : comm i nd
WHERE enane = : enpl oyee_nane;

In this example, the parameter commission with a value of 2000.0 is passed to the
update_commission procedure. But, since the indicator parameter is set to -1,
employee Scott’s commission is set to null in the EMP table.

Status Parameters

There are two special status parameters: SQLSTATE and SQLCODE. The status
parameters return values to the calling Ada application that show if

« the procedure completed without error
= an exception occurred, such as “‘no data found”
= anerror occurred

You can place either one or both of the status parameters anywhere in the parame-
ter list. They are always shown last in this Guide, but that is just an informal coding
convention. The status parameters are not preceded by a colon, and they do not
take a datatype specification. You cannot directly access the status parameters in
the SQL statement in the procedure; they are set by SQL*Module.

SQLSTATE is the preferred status parameter; SQLCODE is retained for compatibil-
ity with older standards.

Module Language 2-17

CONNECT Statement

For more information about the status parameters and the values they return, see
"Error Handling" on page 4-2.

Error Messages

SQL*Module compile time error messages have the MOD prefix. The codes and
messages are listed in Oracle8 Messages.

CONNECT Statement

The connect statement associates a program with a database, and sets the current
connection. The syntax of the command is shown in the following syntax diagram.
Key words, which you must spell exactly as shown, are in upper case; tokens you
supply are in lower case. If a clause is optional, it is shown off the main path, which
flows to from left to right. For a more complete discussion of syntax diagrams, see
Appendix B, “Module Language Syntax”.

DEFAULT
CONNECT TO USING }‘
ﬁl USER H usernam)

A db-env (database environment) is a Net8 connect string or instance-alias. The
conn-name (connection name) is optional. For multiple connections, you must spec-
ify the connection names. You can omit it if you will only use a single connection.
The USING clause is optional. A passwd is the password..

Connecting as DEFAULT results in a connection to Oracle using either TWO_TASK
(if it applies to your operating system) or ORACLE_SID and the account specified
by the parameter os_authent_prefix in your file init.ora. The optional token passwd is
the password.

The ANSI SQL92 standard does not allow db-env to be optional. This is an Oracle
extension (which will be flagged by the FIPS option) which enables a connection to
the default server as a specific user.

You must use Net8 in SQL*Module applications. Note that passwd can only be a
variable and not a character string literal. All other variables can be either a charac-
ter string literal or a variable previously defined, preceded by ":".

Here is a illustative code fragment from a module named demo.mad, which contains
the following procedure to do a connect:

2-18 SQL*Module for Ada Programmer’s Guide

DISCONNECT Statement

PROCEDURE ora_connect (:dbid VARCHAR2(14),
: dbnane VARCHAR2(14),
;uid VARCHAR2(14) ,
‘pwd VARCHARR(14),

SQQOIXE);
QONNECT TO : dbid AS : dbnanme USER :uid US NG : pwd;

An Ada application can contain these statements to do the connect:

pwd : constant string := "tiger";

CEMD CRA GONNECT("i nst 1", "RMVI'L", "scot t ", PAD, SQLOCDE) ;
if SQQALE /= 0 then

For more information, see the Net8 Administrator’s Guide and the Oracle8 Adminis-
trator’s Guide

SET CONNECTION Statement
The set connection statement sets the current connection. Its syntax is:
SET CONNECTION { connection-name | DEFAULT }
DEFAULT is a special case of the connection-name, ’/’, at the current ORACLE_SID.

DISCONNECT Statement

The disconnect command ends an association between an application and a data-
base environment. It can be summarized as:

DISCONNECT { connection-name | ALL | CURRENT | DEFAULT}

The full ANSI semantics are not followed. Instead of raising an exception condition
if the connection has an active transaction, the transaction is (implicitly) rolled back
and the connection(s) disconnected.

DISCONNECT ALL only disconnects connections which are established by
SQLLIB (that is, by SQL*Module).

DISCONNECT DEFAULT and DISCONNECT connection-name terminate only the
specified connection.

Module Language 2-19

Multi-tasking

DISCONNECT CURRENT terminates the connection regarded by SQLLIB as the
"current connection” (either the last connection established or the last connection
specified in a SET CONNECTION statement).

After the current connection is disconnected, you must execute a set connection or
a connect statement to establish a new current connection. Then you can execute
any statement that requires a valid database connection.

You must explicitly commit or roll back the current transaction before disconnect-
ing. If you do not commit the transaction before disconnecting, or if the program
exits before committing, the current transaction is automatically rolled back.

Here is an example of two procedures from the module demo.mad illustrating the
disconnect command:

PROCEDURE or a_di sconnect (: dbnane VARCHAR2(14),

sQaIy ;
D SCONNECT : dbnang;

mora_connit(SQ_CD]E);
QOW T WRK;

these procedures are called from your application as follows:

CEMD GRA. COMM T(SQLATE)
DEMD CRA DI SOONNECT(" RVI1", SQLOCDE);

A required commit command was executed using the procedure ora_commit
(which is also in the file demo.mad) just before the disconnect. .

Multi-tasking

Starting with release 8.0, multi-tasking Ada programs are supported by SQL*Mod-
ule. The new commands that you use in a multi-tasking program are described in
the following sections:

ENABLE THREADS

This command initializes the process for later use with Ada tasks. It must be called
prior to the creation of any Ada tasks. It is:

ENABLE THREADS,

2-20 SQL*Module for Ada Programmer’s Guide

Multi-tasking

SQL_CONTEXT Datatype

The datatype, SQL_CONTEXT, is used to support multi-tasking applications. It
points to SQLLIB’s runtime context. You pass the context as a parameter to
SQL*Module procedures. If it is passed, then it indicates which SQLLIB runtime
context will be used for execution. If no SQL_CONTEXT parameter is passed, then
SQL*Module uses the global runtime context of SQLLIB.

For example, here is a procedure that uses SQL_CONTEXT:

PROCEDURE sel dept (: ctx SQ._QGONTEXT,
»dno | NTEGER

SQATE);
SELECT deptno INTO :dno FROM emp WHERE dname ='SALES;

In this example, the select statement will use the runtime context pointed to by the
variable ctx. ctx must have been previously allocated in a CONTEXT ALLOCATE
statement. Note that you never reference the SQL_CONTEXT variable directly. It
appears only in the code that SQL*Module generates.

CONTEXT ALLOCATE

This command allocates storage in memory for a SQLLIB runtime context that is
used to support multi-tasking. An example is:

CONTEXT ALLOCATE :ctxvar,
ctxvar is of type SQL_CONTEXT. If sufficient storage is available, ctxvar will con-

tain the address of the runtime context. Otherwise, ctxvar will be zero and an error
will be returned in the provided status variables.

CONTEXT FREE

CONTEXT FREE frees all storage associated with the SQLLIB runtime context. It
does not disconnect any active connection. Prior to deallocating the runtime con-
text, you must execute the DISCONNECT command for each active connection.

The CONTEXT FREE statement always succeeds and ctxvar is zero after execution.
If the context is ctxvar, then, an example is:

CONTEXT FREE :ctxvar,

Multi-tasking Restrictions
« All database connections must be established prior to task activation.

Module Language 2-21

Multi-tasking Example

« Multi-tasking applications cannot be used to access database stored procedures.

Multi-tasking Example

Here is part of a module, adademo.mad:

PROCEDURE enabl e_t hreads (SQ.QXE);
ENABLE THREADS,
PROCEDURE al | ocate_context (:ctx SQ_CGONTEXT, SQ.QXE);
QONTEXT ALLQCATE : ctx;
PROCEDURE free_context (:ctx SQ_CONTEXT, SQGIE);
QONTEXT FREE :ctXx;
PROCEDURE di sconn_db (:ctx SQ._OONTEXT,
: dbnane VARCHAR2(14),
SQATE);
DO SCONNECT : dbnang;

these procedures are called as follows:
w th ADADEMD
-- Declare contexts CTXl, CIx2

ADACEMD ENABLE. THREADS(SQLOTTE)

ADADEMD ALLQCATE GONTEXT(CTX1, SQLOGDE);
ADADEMD ALLQCATE GONTEXT(CTX2, SQLODE);
-- Spawn tasks that process data:

An example of explicitly disconnecting and freeing contexts is:
-- After processing data:

ADADEMD D SCONN DB(CTX1, DBNAM);

ADADEMD D SCONN DB(CTX2, DBNAMR) ;

ADADEMD FREE_GONTEXT(CTX1) ;
ADADEMD FREE_GONTEXT(CTX2) ;

2-22 SQL*Module for Ada Programmer’s Guide

3

Accessing Stored Procedures

This chapter describes how to use SQL*Module to generate interface procedures to
call stored procedures. It covers the following topics:

PL/SQL

Stored Procedures

Stored Packages

Accessing Stored Procedures

Case of Package and Procedure Names
Early and Late Binding

Cursor Variables

Dynamic SQL

The WITH INTERFACE Clause
Storing Module Language Procedures

Connecting to a Database

Note: The examples in this chapter use the tables defined in Chapter 6, “Demon-
stration Programs”.

Accessing Stored Procedures 3-1

PL/SQL

PL/SQL
This section contains a brief overview of PL/SQL, Oracle’s procedural language
extension to SQL. PL/SQL is a modern block-structured language that allows you
to
« declare constants and variables
« control execution flow, using IF ... THEN ... ELSE, EXIT, GOTO, and other pro-
cedural constructs
= create loops, using WHILE ... LOOP and FOR ... LOOP
= assign constant or variable expressions to a variable
« issue SQL Data Manipulation Language and Transaction Control statements
« define exceptions, handle them using WHEN EXCEPTION_NAME THEN ...,
and raise them using RAISE EXCEPTION_NAME
See the PL/SQL User’s Guide and Reference for complete information about the
PL/SQL language.
Procedures

A PL/SQL procedure is a named PL/SQL block. Unlike an anonymous block, a pro-
cedure can

« take parameters

« beinvoked from a separate application

« be compiled once, but invoked many times

« bestored in compiled form in a database, independent of the shared SQL cache

A procedure contains one or more PL/SQL blocks. The following example com-
putes the grade point average. The student ID number is passed as a parameter to
the procedure, and the computed grade point average is returned by the procedure.

PROCEDURE get _gpa(
student _id I N NUMBER

gpa QJT NMBER) 1S
n NUMBER
grade_tenp NUVBER
gpa_tenp NUMBER -- needed because PL/ SQL cannot read

-- an QJI paraneter like GPA
AQRSR cl(sid) IS
SHLECT grade FROM enrol | nent

3-2 SQL*Module for Ada Programmer’s Guide

Stored Procedures

WHERE student _id = sid;

BEA N
n:=0;
gpa :=0;
CPEN c1(student _id);
LaP
FETCH c1 | NTO gr ade_t enp;
EXT WEN c19OTFAUND, -- C1IWOMFAND i s TRE
-- when no nore data found
gpa_tenp := gpa_tenp + grade_tenp;
n:=n+1;
END LQOCP,
IFn>0 THN
gpa :=gpa_tenp / n;
END I F;
QLCeE c1;
END,

BEND PROCEDURE get _gpa;

The procedure declaration adds a parameter list to the PL/SQL block. In this exam-
ple, student _id is a parameter whose mode is IN. The mode of a parameter indicates
whether the parameter passes data to a procedure (IN), returns data from a proce-
dure (OUT), or can do both (IN OUT). The parameter gpa is an OUT parameter. It
returns a value, but you cannot use it to pass a value to the procedure. Nor can you
read its value inside the procedure, even after a value has been assigned to it.

Stored Procedures

You can store PL/SQL procedures in the database, and call these stored procedures
from Oracle applications. Storing a procedure in the database offers many advan-
tages. Only one copy of the procedure needs to be maintained, it is in the database,
and it can be accessed by many different applications. This considerably reduces
maintenance requirements for large applications. A stored procedure is not recom-
piled each time it is called.

Procedures can be stored in the database using Oracle tools such as SQL*Plus. You
create the source for the procedure using your text editor, and execute the source
using SQL*Plus (for example, with the @ operator). When you input the source, use
the CREATE PROCEDURE command. (You can also use CREATE OR REPLACE
PROCEDURE, to replace an already stored procedure of the same name.)

See the Oracle8 Reference for complete information about the CREATE PROCE-
DURE command.

Accessing Stored Procedures 3-3

Stored Packages

Stored Packages

The examples of stored procedures shown so far in this chapter involve standalone
procedures (sometimes called top-level procedures). These are useful in small appli-
cations. But, to gain the full power of stored procedures, you should use packages.

A package encapsulates procedures, as well as other PL/SQL objects. Stored pack-
ages that are used with Ada applications have two parts: a package specification
and a package body. The specification is the (exposed) interface to the host applica-
tion; it declares the procedures that are called by the application. A complete
PL/SQL package specification can also declare functions, as well as other PL/SQL
objects such as constants, variables, and exceptions. However, an Ada application
using SQL*Module cannot access or reference PL/SQL objects other than subpro-
grams. The package body contains the PL/SQL code that defines the procedures
and other objects that are declared in the package specification.

Although an Ada application can only access public subprograms, a called subpro-
gram can in turn call private subprograms, and can access public and private vari-
ables and constants in the package.

For complete information about stored packages, see the PL/SQL User’s Guide and
Reference.

Accessing Stored Procedures

You can use SQL*Module to provide a bridge that enables your host application to
access procedures stored in the database. A host application written in Ada cannot
call a stored database subprogram directly. But you can use SQL*Module to con-
struct an interface procedure (“stub’) that calls the stored database subprogram.
Table 3-1 shows, in schematic form, how this process works.

3-4 SQL*Module for Ada Programmer’s Guide

Accessing Stored Procedures

Figure 3-1 Accessing a Stored Procedure

Host Application

with SQL_STANDARD, TEXT_IO, INTEGER_IO
ENROLLMENT;

procedure ENROLL_DRV is
SQLCODE : SQL_STANDARD.SQLCODE_TYPE;
SID : SQL_STANDARD.INT;
CLASS_NUMBER : SQL_STANDARD.INT;

begin

ENROLL_EXTERN(CLASS_NUMBER, SID, SQLCODE);

end ENROLL_DRV;

call...

v

SQL*Module

|
RPC_GENERATE=YES

With Oracle_Sqllib; use Oracle_Sqllib;
| with SQL_STANDARD;
| Package ENROLLMENT is

I
I
I
procedure ENROLL_EXTERN(CLASS_NO: in sql_standard.int; |
STUDENT_ID: in sql_standard.int;

| SQLCODE: out sql_standard.sglcode_type); |
sgl_001 : constant string := |
"begin " "ENROLLMENT.SCOTT" . "ENROLL" "(:CLASS_NO, " & |

| ":STUDENT_ID); end;"; |
I

!_ end ENROLLMENT;

Compile STUB

CREATE OR REPLACE PACKAGE enroliment AS

PROCEDURE enroll (
class_noNUMBER,
student_id NUMBER)

WITH INTERFACE PROCEDURE

enroll_extern (

class_noINTEGER,
student_id
sqlcode);

integer,

/

CREATE OR REPLACE PACKAGE BODY enroliment AS
PROCEDURE enroll (
class_no number,
student_id number) IS
BEGIN
INSERT INTO enroll_table VALUES (
class_no,
student_id);
END enroll;
END enroliment;

I

I

|

|

|

I

I

I

| END enroliment;
I

|

|

|

I

I

I

I

| /

b J

Accessing Stored Procedures 3-5

Case of Package and Procedure Names

In this example, there is a procedure stored in the database called enroll. The
PL/SQL source code that created the procedure is shown in the right-hand box.
The WITH INTERFACE clause in the procedure is described in the section "The
WITH INTERFACE Clause" on page 3-13. The procedure has two database parame-
ters: class_no and student_id. The SQLCODE error return parameter is added in
the interfacing clause.

Case of Package and Procedure Names

The Oracle Server always translates to uppercase the names of database objects as
they are inserted into the database. This includes the names of packages and proce-
dures. For example, if you are loading a package into the database in the SCOTT
schema, and have a PL/SQL source file that contains the line

CREATE PACKAGE school _records AS ...
then Oracle inserts the name into the schema as SCHOOL_RECORDS, not the low-
ercase ‘‘school_records”. The following SQL*Module command (in UNIX)

nodada rpc_gener at e=yes pname=school _records useri d=scott

generates an error, since there is no package named “‘school_records’ in the schema.

If you prefer to have your package and procedure names stored in lowercase in the
database, you must quote all references to the name in the PL/SQL source file, or
as you insert them into the database using SQL*Plus. So, you would code

CREATE PACKACE "school _records" AS ...
Note also that SQL*Module preserves the case of subprogram names when creating
interface procedure files.

However, if you really do want uppercase names, some operating systems (OPEN
VMS is an example) require that you quote the name when you specify it on the
command line. So, you would enter the command as

nodada rpc_gener at e=yes pname="SCHXL_REQCRDS' user=scot t

See your system-specific Oracle documentation, and your operating system docu-
mentation, for additional information on case conventions for command lines that
are in effect for your operating system.

3-6 SQL*Module for Ada Programmer’s Guide

Early and Late Binding

Early and Late Binding

When you generate RPCs (remote procedure calls) using SQL*Module, you have a
choice of early binding or late binding. Your choice of early or late binding is con-
trolled by the BINDING option.

When you choose early binding, SQL*Module generates a call to the procedure
stored in the database, and also uses a time stamp that is associated with the call.

The time stamp records the date and time (to the nearest second) that the stored
procedure was last compiled. The time stamp is created by the Oracle database. If a
host application calls the stored procedure through the interface procedure, and the
time stamp recorded with the interface procedure is earlier than the time stamp on
the stored procedure recorded in the database, an error is returned to the host appli-
cation in the SQLCODE and/or SQLSTATE status parameter. The SQLCODE error
is 4062 “time stamp of name has been changed”.

The late binding option, on the other hand, does not use a time stamp. If your appli-
cation calls a stored procedure that has been recompiled since SQL*Module gener-
ated the interface procedure, no error is returned to the application.

With late binding, SQL*Module generates the call to the stored procedure using an
anonymous PL/SQL block. The following example shows a specification for a
stored procedure that is part of a package in the SCOTT schema:

PACKAGE enppkg 1S

PROCEDURE get _sal _conm (enp_num IN NMBER
sal ary QUr NUMBER
commission QJI NUMBER
WTH | NTERFACE
PROCEDURE get _sal _enp (
enp_num | NTECER
sal ary REAL,
commission REAL | NDI CATCR comm i nd,
comm.i nd SVALLI NT,

Seleor=F
BEND enppkg;

If you generate an RPC interface procedures output file for the package using the
command

nodada pnane=BMPPKG r pc_gener at e=yes bi ndi ng=l ate useri d=scott/ti ger

SQL*Module generates a call in the output file, as follows:
Wth Qacle Sgllib; use Gacle Sqllib;

Accessing Stored Procedures 3-7

Early and Late Binding

wth SQ. STANDARD
Package BEMPPKG i s

procedure GET_SAL BEMP(EMPNLM in sql _standard.int;
SALARY: out sqgl_standard.real ;
COM SSON out sqgl _standard.real ;
CGOMIND out sql _standard. smal lint;
SQAXIE out sql_standard. sql code_type);
sgl _001 : constant string :=
"begin ""BWPKG SCOIT'"." &
"UUCET_SAL COW(CBEMPNLV D SALARY, (QOWM S ONGOMWIND); end; "

end BEMPPKG

In other words, the call to the stored procedure get_sal_comm is performed using an
anonymous PL/SQL block. This is the way stored procedures are called from an
Oracle precompiler or Oracle Call Interface application.

The advantages of late binding are

= greater flexibility

« changes in the stored procedure(s) are transparent to the user

= gives behavior similar to interactive SQL (for example, SQL*PLus)
The disadvantages of late binding are

= There might be additional performance overhead at runtime, due to the neces-
sity of compiling the PL/SQL anonymous block.

« Itis difficult to detect runtime PL/SQL compilation errors in the host applica-
tion. For example, if the anonymous block that calls the late-bound procedure
fails at runtime, there is no convenient way for the host application to deter-
mine the cause of the error.

= The lack of time-stamp capability means that changes, perhaps radical changes,
in the stored procedure could be made after the host application was built, and
the application would have no way of detecting this.

Use the BINDING={EARLY | LATE} command line option to select early or late
binding when generating RPC interface procedures. See Chapter 5, “Running
SQL*Module” for a description of this and other command line options.

3-8 SQL*Module for Ada Programmer’s Guide

Cursor Variables

Cursor Variables

You can use cursor variables in your application. A cursor variable is a reference to a
cursor that is defined and opened on the Oracle8 server. See the PL/SQL User’s
Guide and Reference for complete information about cursor types.

The advantages of cursor variables are

= Encapsulation: queries are centralized, placed in the stored procedure that opens
the cursor variable. The logic is hidden from the user.

« Ease of maintenance: if you need to change the cursor, you only need to make the
change in one place: the stored procedure. There is no need to change each
application.

= Convenient security: the user of the application is the username used when the
application connects to the server. The user must have execute permission on
the stored procedure that opens the cursor. But the user does not need to have
read permission on the tables used in the query. This capability can be used to
limit access to the columns and rows in the table.

Cursor Variable Parameters

You define a cursor variable parameter in your module using the type
SQL_CURSOR. For example:

PROCEDURE al | oc_cursor (
SQAATE,
rcurs S ARSR);

In this example, the parameter curs has the type SQL_CURSOR.

Allocating a Cursor Variable

You must allocate the cursor variable. You do this using the Module Language com-
mand ALLOCATE. For example, to allocate the SQL_CURSOR curs that is the for-
mal parameter in the example above, you write the statement:

ALLCCATE : curs;

Note: You use the ALLOCATE command only for cursor variables. You do not
need to use it for standard cursors.

Accessing Stored Procedures 3-9

Cursor Variables

Opening a Cursor Variable

You must open a cursor variable on the Oracle Server. You cannot use the OPEN
command that you use to open a standard cursor to open a cursor variable. You
open a cursor variable by calling a PL/SQL stored procedure that opens the cursor
(and defines it in the same statement).

For example, consider the following PL/SQL package, stored in the database:
QONNECT scott/tiger

CREATE (R REPLACE PACKACE cursor _var_pkg AS

TYPE enp_record_type 1S REGORD (enane BWP. enane%d YFE,) ;
TYPE curtype | S REF AURSCR RETURN enp_recor d_t ype;

PROCEDURE CPENL(curl | N QJT curtype)
WTH | NTERFACE
PROCEDURE

CPENL (SQOXE integer, curl S ARSR;
end cursor_var_pkg;
CREATE (R REPLACE PACKACGE BCDY cursor_var_pkg AS

PROCEDURE CPENL(curl IN QJT curtype) IS
BEQ N
CPEN curl FOR SHLECT ename FROM enp_vi ew

END,
BEND cursor _var_pkg;

AWM T;

After you have stored this package, and you have generated the interface proce-
dures, you can open the cursor curs by calling the OPENL1 stored procedure from
your Ada driver program. You can then call module procedures that FETCH the
next row from the opened cursor. For example:

PROCEDURE f et ch_fromcursor (
SQOTE,
ccurs S ARSR
cenp_nane VARCHARZ2(11));

FETCH : curs | NTO : enp_nane,

3-10 SQL*Module for Ada Programmer’s Guide

Cursor Variables

In your driver program, you call this procedure to fetch each row from the result
defined by the cursor. When there is no more data, the value +100 is returned in
SQLCODE.

Note: When you use SQL*Module to create the interface procedure to call the
stored procedure that opens the cursor variable, you must specify BIND-
ING=LATE. Early binding is not supported for cursor variables in this release.

Opening in a Stand-alone Stored Procedure

In the example above, a cursor type was defined inside a package, and the cursor
was opened in a procedure in that package. But it is not always necessary to define
a cursor type inside the package that contains the procedures that open the cursor.

If you need to open a cursor inside a stand-alone stored procedure, you can define
the cursor in a separate package, then reference that package in the stand-alone
stored procedure that opens the cursor. Here is an example;

PACKAGE dummy | S
TYPE EnphNane | S REGCRD (nane VARCHAR2(10));
TYPE enp_cursor_type | S REF QURSCR RETURN EnpNane;

END,

-- and then define a stand-al one procedure:
PROCEDURE open_enp_curs (
enp_cursor |N QJT dummy. enp_cur sor _t ype;
dept_num IN NMBER IS
BEA N
CPEN enp_cursor FCAR
SELECT enane FROM enp WHERE dept no = dept _num

BND,
BND,

Return Types

When you define a reference cursor in a PL/SQL stored procedure, you must
declare the type that the cursor returns. See the PL/SQL User’s Guide and Reference
for complete information on the reference cursor type and its return types.

Closing a Cursor Variable

Use the Module Language CLOSE command to close a cursor variable. For exam-
ple, to close the emp_cursor cursor variable that was OPENed in the examples
above, use the statement

CLCBE : enp_cur sor;

Accessing Stored Procedures 3-11

Dynamic SQL

Note that the cursor variable is a parameter, and so you must precede it with a
colon.

You can reuse ALLOCATEd cursor variables. You can OPEN, FETCH, and CLOSE
as many times as needed for your application. However, if you disconnect from the
server, then reconnect, you must reallocate cursor variables.

Restrictions on Cursor Variables

The following restrictions apply to the use of cursor variables:

1. You can only use cursor variables with the commands:

« ALLOCATE

« FETCH

«» CLOSE

2. The DECLARE CURSOR command does not apply to cursor variables.
= You cannot FETCH from a CLOSEd cursor variable.

= You cannot FETCH from a non-ALLOCATEd cursor variable.

« Cursor variables cannot be stored in columns in the database.

= Acursor variable itself cannot be declared in a package specification. Only the
type of the cursor variable can be declared in the package specification.

= A cursor variable cannot be a component of a PL/SQL record.

Dynamic SQL

Dynamic SQL is the capability of executing SQL commands that are stored in char-
acter string variables. The package DBMS_SQL parses Data Definition Language
(DDL) and Data Manipulation (DML) statements at runtime. DBMS_SQL has func-
tions such as OPEN_CURSOR, PARSE, DEFINE_COLUMN, EXECUTE,
FETCH_ROWS, COLUMN_VALUE, etc. Use these functions in your program to
open a cursor, parse the statement, and so on. An example that does dynamic SQL
(demo_dyn_drv.ada and demo_dyn.mad for Solaris platforms) is in the demo direc-
tory.

For more details on this package, see Oracle8 Application Developer’s Guide.

3-12 SQL*Module for Ada Programmer’s Guide

The WITH INTERFACE Clause

The WITH INTERFACE Clause

Examples

The stored procedure format in the previous section can be used for stored proce-
dures that are to be called from applications written using Oracle tools. For exam-
ple, a SQL*Plus script can call the GET_GPA procedure in "Procedures” on page 3-2
just as it is written.

You can code a WITH INTERFACE clause, or you can let SQL*Module generate a
default WITH INTERFACE clause for stored procedures that have been stored with-
out this clause.

This clause, when added to a procedure declaration in the package specification,
lets you add parameters that are essential to perform an RPC to a PL/SQL proce-
dure, through a calling interface procedure in the output file. In addition, the WITH
INTERFACE clause uses SQL datatypes, not the PL/SQL datatypes that are used in
the stored procedure definition. The additional features of the WITH INTERFACE
clause are

« use of SQL datatypes
« optional indicator parameters
« use of the SQLSTATE and SQLCODE status parameters

Note: The procedures names that you code in WITH INTERFACE clauses must be
unique within the entire application. If you let SQL*Module generate default WITH
INTERFACE, then overloaded procedure names are resolved using an algorithm
described in "MAPPING" on page 5-16.

Arrays are not allowed in WITH INTERFACE clauses.

The following package declaration shows how you use the WITH INTERFACE
clause to map PL/SQL datatypes to SQL datatypes, and add the SQLCODE and/or
SQLSTATE status parameters. Status parameters are filled in automatically as the
procedure executes. They are not directly accessible within the procedure body.

CREATE or REPLACE PACKACE gpa_pkg AS
PROCEDURE get _gpa (student _id IN NUMBER
gpa QJT NMBER
WTH | NTERFACE

PROCEDURE get _gpa_i f
(student_id | NEER
gpa REAL,
SQAGE I NTEGER

Accessing Stored Procedures 3-13

The WITH INTERFACE Clause

SQLSTATE CHARACTER(6)) ;

The interface procedure name specified in the WITH INTERFACE clause can be the
same as the name of the procedure itself, or, as in this example, it can be different.
However, the name specified in the WITH INTERFACE clause is the name that
must be used when you invoke the stored procedure from your host application.

In the example above, the datatypes in the WITH INTERFACE clause are SQL
datatypes (INTEGER and REAL). These types are compatible with the PL/SQL
datatype NUMBER.

You must include either a SQLCODE or a SQLSTATE parameter in the parameter
list of the WITH INTERFACE clause. You can include both. SQLSTATE is the recom-
mended parameter; SQLCODE is provided for compatibility with the SQL89 stan-
dard.

Note: Parameters in the PL/SQL procedure specification cannot be constrained.
Parameters in the WITH INTERFACE clause must be constrained where required.

The following package definition shows an example of the WITH INTERFACE
clause:

CREATE (R REPLACE PACKACE gpa_pkg AS

PROCEDURE get _gpa(student _i d IN NUMBER
student |ast _nanme | N QUI CHARACTER
gpa aur NUMBER)

WTH | NTERFACE
PROCEDURE get _gpa i f
(student_id | NTECER

student _| ast _nane CHARACTER(15)
I NDI CATCR shane_i nd,

snane_i nd SVALLI NT,

gpa REAL,
SQSTATE CHARACTER 6) ,
SQ.OTE | NTEGER ;

END,

In the example above, the student_last_name parameter isa CHARACTER, which is
both a PL/SQL and a SQL datatype. In the PL/SQL part of the procedure defini-
tion, the parameter must be unconstrained, following the syntax of PL/SQL. But in
the WITH INTERFACE clause, you must specify the length of the parameter.

The student_last_name parameter also takes an indicator parameter, using the syn-
tax shown. See Appendix B for the formal syntax of the WITH INTERFACE clause.

3-14 SQL*Module for Ada Programmer’s Guide

The WITH INTERFACE Clause

SQL Datatypes

The SQL datatypes that you can use in the WITH INTERFACE clause are listed in
Table 3-1, along with their compatible PL/SQL datatypes.

Table 3-1 SQL Datatypes

SQL Datatypes

Range or Size

SQL Meaning

Compatible PL/SQL
Datatypes

CHARACTER (N)

1< N < 32500 bytes

String of length N

VARCHAR2(N),

OR CHAR (N) (if N is omitted, N | CHAR(N), DATE
is effectively 1)
DOUBLE PRECI- Implicit precision 38 | Approximate NUMBER
SION numeric type
INTEGER System specific Integer type NUMBER,
BINARY_INTEGER
or INT
SMALLINT System specific Small (or short) NUMBER,
integer type BINARY_INTEGER
REAL System-specific Approximate NUMBER
numeric type
VARCHAR2(N) 1 < N <32500 bytes Character array of | VARCHAR2(N),
length N CHAR(N),DATE
SQL_CURSOR Cursor variable REF cursor
type
Notes

1. SQL datatypes compatible with NUMBER are also compatible with types derived from
NUMBER, such as REAL.

2. The size of integer and small integer types is system specific. For many systems, inte-
gers are 32 bits wide and small integers are 16 bits, but check your system documenta-
tion for the size on your system.

DATE Datatype

SQL*Module does not directly support the Oracle DATE datatype. You can, how-
ever, use character strings when you fetch, select, update, or insert DATE values.
Oracle does the conversion between internal DATEs and character strings. See the

Accessing Stored Procedures 3-15

The WITH INTERFACE Clause

Oracle8 Reference for more information about the DATE datatype, and conversion between
DATEs and character strings.

The Default WITH INTERFACE Clause

If a package has already been defined in the database with no WITH INTERFACE
clauses for the subprograms, you can still generate interface procedures to call the
subprograms. The default WITH INTERFACE clause that is generated by
SQL*Module when there is no WITH INTERFACE clause in the package or proce-
dure gives you all the features of the standard WITH INTERFACE clause:

« the SQLCODE error handling parameter
« the SQLSTATE error handling parameter
« indicator parameters

« datatype mapping between PL/SQL base and derived datatypes and SQL types

Procedures

When SQL*Module generates an interface procedure with a default WITH INTER-
FACE clause, it generates a SQLCODE parameter in the first parameter position,
and a SQLSTATE parameter in the second position. Then, for each actual parameter
in the stored procedure or stored function, a parameter is generated with the appro-
priate mapped host language datatype. Each parameter is followed by an indicator
parameter, mapped to the correct host language type from the SQL datatype
SMALLINT.

Functions

If SQL*Module is generating a default WITH INTERFACE clause for functions in a
package, then the WITH INTERFACE clause is generated as if the function were a
procedure, with the return value and its indicator parameter as the last two parame-
ters in the clause.

Table 3-2 shows how predefined, or base, PL/SQL datatypes are mapped to SQL
datatypes, and then to host language datatypes. PL/SQL subtypes that are derived
from the base types are also supported, and are mapped as indicated for the base

type.

3-16 SQL*Module for Ada Programmer’s Guide

The WITH INTERFACE Clause

Table 3-2 Mapping PL/SQL Datatypes to SQL Datatypes

PL/SQL Ada Language Datatype
Datatype

BINARY INTEGER SQL_STANDARD.INT
NUMBER SQL_STANDARD.
NUMBER(P,S) DOUBLE_PRECISION
RAW STRING

LONG RAW

LONG STRING

BOOLEAN SQL_STANDARD.INT
CHAR SQL_STANDARD.CHAR
VARCHAR2 STRING

DATE SQL_STANDARD.CHAR
ROWID STRING

CURSOR ORACLE_SQLLIB.SQL_CURSOR
Notes

Maximum length of a STRING is 32500 bytes.
Maximum length of a DATE is 2048 bytes.
Maximum length of ROWID and MLSLABEL is 256 bytes.

Suppose, for example, that a procedure stored in the SCOTT schema has the param-

eter list

PROCEDURE procl (
PARAML | N

NUMBER

PARAMR | N QJT DATE

PARANVB
PARAM!
PARAVS

QUr DABLE PREA SI QN
CHARACTER
Bl NARY_| NTECER)

If you run the module compiler, modada, as follows;

nodada pnane=PROCL rpc_gener at e=yes user=scott/tiger onane=procl

Accessing Stored Procedures 3-17

Storing Module Language Procedures

then the Ada procedure specification in the generated output file procl_.awould be
created by SQL*Module as follows;

procedure PROCL(SQGE in out sgl _standard. sql code_type;
sqlstate: in out sqgl _standard. sql state_type;
PARAML: i n sqgl _standard. doubl e_preci si on;
PARAML ind: in sqgl _standard. snal lint;
PARAMR: in out oracle sqllib.sql_date;
PARAMP_ind: in out sql_standard.snallint;
PARAMB: out sqgl _st andar d. doubl e_pr eci si on;
PARAMB ind: out sqgl _standard.snallint;
PARAME: in string;
PARAME ind: in sqgl _standard.snal lint;
PARAMNG: in sql _standard.int;
PARAMG ind: in sqgl _standard.snallint);

Function calls are generated as procedures with the last two parameters in the gener-
ated prototype being the return parameter and the indicator variable for the return parame-
ter. For example:

FUNCTT ON funcl (
PARAML | N NUMBER) RETURN VARCHAR2

would have the Ada prototype:

procedure FUNCL(SQGE in out sgl _standard. sql code_type;
sqlstate: in out sqgl _standard.sqlstate type;

PARAML.: i n sql _standard. doubl e_preci si on;

PARAML ind: in sqgl _standard.snal lint;

nod func_return: out string;

nod func_return_ind: out sqgl _standard.snallint) is

begi n

end FUNCIL,;

Storing Module Language Procedures

You can also use SQL*Module to create a stored package in the database from Mod-
ule Language procedures. By specifying the module file in the INAME command
line option (see Chapter 5, “Running SQL*Module” for details), and setting the
option STORE_PACKAGE=YES, the procedures in the module file are stored in a
package in the database, using the module name as the default package name. (The

3-18 SQL*Module for Ada Programmer’s Guide

Storing Module Language Procedures

default name can be overridden using the PNAME option. See Chapter 5, “Run-
ning SQL*Module” for details.)

For example, the following module file:

MDULE test_sp
AUTHR ZATI ON scot t

PROCEDURE get _enp (
: enpnane CHAR(10),
renpnunber | NTEGER
SeXeer=F
SH ECT enane | NTO : enpnane
FROM enp
WHERE enpno = : enpnunber ;

PROCEDURE put _enp (
: enpnane CHAR(10),
renpnuniber | NTEGER
: dept nunber | NTEGER
SQAOTH);
I NSERT | NTO enp (enane, enpno, deptno) VALUES
(: enpnane, :enpnunber, :deptnunber);

when stored as a package in the database would produce the following PL/SQL
code for the package specification;

package test_sp is
procedure get_enp
(enpnane out char,
enpnunber in nunber)
with interface procedure get_enp
(enpnane char (11),
enpnunber i nt eger,
sql code integer);
procedure put_enp
(enpnare in char,
enpno i n nunber,
dept no i n nunber)
with interface procedure put_enp
(enpnane char (11),
enpnunber i nt eger,
dept nunber i nt eger,
sql code integer);
end test_sp;

Accessing Stored Procedures 3-19

Connecting to a Database

Note: You cannot store module procedures that contain the ALLOCATE statement,
nor statements CONNECT, DISCONNECT, ENABLE THREADS, CONTEXT, nor
FETCH and CLOSE statements that refer to cursor variables.

Connecting to a Database

When you write an Ada program that calls RPC interface procedures that were gen-
erated from stored procedures, you need a way to connect to a database at runtime.
The steps you can take to do this are

Write a module that contains connect and disconnect procedures. See "CON-
NECT Statement" on page 2-18 for the syntax of these procedures. See also the
examples in the demomod sample in Chapter 6, “Demonstration Programs”.

Compile the module using SQL*Module.

Add a with clause to the host application file referencing the generated specifica-
tion name.

Compile the specification file.
Compile the source output file.

Link your main application.

3-20 SQL*Module for Ada Programmer’s Guide

A

Developing the Ada Application

This chapter describes the criteria that a Ada application must meet when access-
ing module procedures, or when calling RPC stubs generated by SQL*Module. Top-
ics covered include

Program Structure

Error Handling

Obtaining the Number of Rows Processed
Handling Nulls

Cursors

Specification Files

Calling a Procedure

Arrays as Procedure Arguments

National Language Support

The sample programs in this chapter are source code listings for the Module Lan-
guage procedures that are called by the sample programs in Chapters 6, and a set
of SQL statements that create and partially populate the example tables. These
sources are also available on-line, in the demo directory.

Developing the Ada Application 4-1

Program Structure

Program Structure

The developer determines the structure of an application program that uses
SQL*Module. A significant advantage that you obtain from using SQL*Module is
that it imposes very few special requirements or constraints on the program design,
unlike some other SQL programmatic interfaces.

The code that you write is purely in the language of the host application program.
There is no need for special declare sections, embedded SQL statements, and spe-
cial error handling and recovery. Database operations are mostly transparent to the
application program developer, being taken care of by the Module Language or
PL/SQL stored procedures.

There are, however, some SQL concepts of which the host application developer
must be aware

« error handling, and the use of the SQLSTATE and/or SQLCODE status parame-
ter.

« the concept of null, and how to use indicator variables to handle it

« the concept of a cursor

Error Handling

Each Module Language procedure that is called from the host application must con-
tain a parameter that returns status information to the application. There are two
status parameters that you can use: SQLCODE and SQLSTATE. SQLCODE returns
an integer value, while SQLSTATE returns a five-character string that contains an
alphanumeric code.

SQLCODE is provided for compatibility with applications written to the 1989 SQL
standards; new applications should use the SQLSTATE parameter.

When calling stored database procedures through an RPC stub, you include SQL-
CODE and/or SQLSTATE in the parameter list of the WITH INTERFACE clause in
the procedure’s package specification. See "The WITH INTERFACE Clause" on
page 3-13.

SQLCODE

SQLCODE is an output parameter that can be included in a module procedure, and
in the WITH INTERFACE clause in PL/SQL stored package specifications. SQL-
CODE returns a value that indicates whether a procedure completed successfully,
completed with warnings, or did not complete due to an error.

4-2 SQL*Module for Ada Programmer’s Guide

Error Handling

SQLCODE returns three kinds of values:

0

Indicates that the procedure completed with no errors or warnings.
<0

Indicates that an error occurred during execution of the procedure.
+100

Indicates that a SQL statement did not find a row on which to operate.

Negative SQLCODE values are Oracle message numbers. See the Oracle8 Messages
manual for a complete list of Oracle codes and their accompanying messages. See
the next section, “SQLSTATE”, for mappings between Oracle error numbers and
SQLSTATE values.

Obtaining Error Message Text

SQLSTATE

The procedure error_message in the public package oracle_sgllib was introduced in
release 8.0. This procedure obtains the text associated with the SQLCODE of the lat-
est error returned. The prototypes are (with and without a runtime context):

procedur e BRRCR MESSAGE (ctx oracl e_sql lib. sgl _context,
nsg_buf system address,
nsg_buf | en sqgl _standard.int);

and:

procedur e BRROR MESSAGE (nsg_buf : out syst em addr ess,
nsg_buf |len:out sgl_standard.int);

SQLSTATE is a five-character alphanumeric output parameter that indicates the
completion status of the procedure. It is declared as
SQL_STANDARD.SQLSTATE_TYPE.

SQLSTATE status codes consist of a two-character class code followed by a three-
character subclass code. Aside from the class code 00 (“successful completion”), the
class code denotes the category of the exception. Also, aside from the subclass code
000 (“not applicable™), the subclass code denotes a specific exception within that
category. For example, the SQLSTATE value 22012’ consists of class code 22 (“data
exception”) and subclass code 012 (“division by zero”).

Developing the Ada Application 4-3

Error Handling

Each of the five characters in a SQLSTATE value is a digit (0..9) or an uppercase
Latin letter (A..Z). Class codes that begin with a digit in the range 0..4 or a letter in
the range A..H are reserved for the predefined conditions (those defined in the
SQL92 specification). All other class codes are reserved for implementation-defined
sub-conditions. All other subclass codes are reserved for implementation-defined
sub-conditions. Figure 4-1 shows the coding scheme.

Figure 4~1 SQLSTATE

First Char in Class Code

0..4 5..9 A..H 1..Z
0..4
First Char 59
in Subclass
Code A H
1..Z
. Predefined D Implementation-defined

Table 4-1 shows the classes predefined by SQL92.

Table 4-1 Predefined Classes

Class Condition

00 successful completion
01 warning

02 no data

07 dynamic SQL error
08 connection exception
0A feature not supported

4-4 SQL*Module for Ada Programmer’s Guide

Error Handling

Class
21
22
23
24
25
26
27
28
2A
2B
2C
2D
2E
33
34
35
37
3C
3D
3F
40
42
44

HZ

Condition

cardinality violation

data exception

integrity constraint violation

invalid cursor state

invalid transaction state

invalid SQL statement name

triggered data change violation

invalid authorization specification

direct SQL syntax error or access rule violation
dependent privilege descriptors still exist
invalid character set name

invalid transaction termination

invalid connection name

invalid SQL descriptor name

invalid cursor name

invalid condition number

dynamic SQL syntax error or access rule violation
ambiguous cursor name

invalid catalog name

invalid schema name

transaction rollback

syntax error or access rule violation

with check option violation

remote database access

Developing the Ada Application

4-5

Obtaining the Number of Rows Processed

Note: The class code HZ is reserved for conditions defined in International Stan-
dard ISO/I1EC DIS 9579-2, Remote Database Access.

Appendix D, “SQLSTATE Codes” shows how Oracle errors map to SQLSTATE sta-
tus codes. In some cases, several Oracle errors map to a status code. In other cases,
no Oracle error maps to a status code (so the last column is empty). Status codes in
the range 60000 .. 99999 are implementation-defined.

Obtaining the Number of Rows Processed

Starting with release 8.0, function rows_processed, in the public package
oracle_sqllib, returns the number of rows processed by the last SQL statement.

The prototypes are:
function RO PROCESSED return integer;

and

function ROM PROCESSED (ctx oracle_sqllib.sqgl _context) return integer;

where the context, ctx, has been allocated previously.

Handling Nulls

A database column or a SQL expression can have a value, or it can have a special
status called null. A null means the absence of a value. A humeric value or a special
string encoding cannot be used to indicate a null, since all allowable numeric or
string values are reserved for actual data. In a SQL*Module application, you must
use an indicator variable to test a returned value for a null, or to insert a null into a
database column.

Note: The term indicator variable is also referred to as an indicator parameter when
discussing a variable being passed to or retrieved from a procedure.

Indicator Variables

From the host language point of view, an indicator variable is a small integer that is
passed to a procedure. In the SQL statement of the procedure, the indicator is asso-
ciated with the corresponding host parameter. For example, the Module Language
procedure below performs a simple one-row SELECT (the host parameter in the
WHERE clause is assumed to be a primary key):

PROCEDURE get _commi ssi on (
comm ssion REAL,

4-6 SQL*Module for Ada Programmer’s Guide

Handling Nulls

:commi nd SMVALLI NT,
cenp_nunber | NTEGER
SQSTATE);
SELECT conm | NTO : commi ssi on | ND CATCR : conm i nd
FRCOM enp WHERE enpno = : enp_nunber ;

In an Ada application, you call this procedure and test for a possible null in the
returned COMMISSION as follows:

BVWPNO : = 7499;
GET_COM SSION (COMWM SSTON GOMWLI NDI CATAR BVPNQ SQLSTATE) ;
if COWLINJ CATCR < O then
PUT_LINE"Gmssion is null.");
el se
PUT("Commission is ");
PUT(COMWM SSI QN ;
NEWLI NE,
end if;

So if an indicator variable is less than zero when a procedure returns, the associated
host parameter has an undefined value.

You can also associate indicator variables with input parameters, for column values
that are used to insert a new row into a table, or update an existing row. If the value
in the indicator variable is greater than or equal to zero, the value in the associated
parameter is used as the input value. If the indicator variable is set to -1, the value
in the associated parameter is ignored, and a null is inserted as the column value.

For example, the following module procedure inserts a new row into an inventory
table:

PROCEDURE new part (
Ipart_no | NTECGER,
:description CHAR 200),
:bi n_nunber | NTEGER
:bin_no_ind SVALLINT,
SQLSTATE) ;

INSERT INTO i nventory (part_nunber, description, bin_no)

VALUES (:part_no, :description,
2 bin_nunber | ND CATCR : bin_no_i nd);

Developing the Ada Application 4-7

Cursors

When you call this procedure with the parameter bin_no_ind set to -1, any value in
the parameter bin_number is ignored, and a null is inserted into the BIN_NO col-
umn of the table.

If the host language parameter is a character type, and has an associated indicator
variable, a returned indicator value greater than zero indicates that the returned
value was truncated. The value of the indicator is the original (un-truncated)
length, in bytes, of the column or expression value.

Cursors

Programs that retrieve data from a table can work in two different ways. In one
case, a query might be constructed that expects either one row of data to be
returned, or no row. For example, if the program performs a request such as “‘give
me the name of the employee whose employee number is 7499”, where the
employee number is a primary key of the table (and hence, by definition, unique),
the request either returns the name of the employee whose employee number is
7499, or returns an indication that no such employee exists in the table.

If no employee exists with that number, the query procedure returns a ‘‘no data
found” indication in the SQLCODE or SQLSTATE parameter.

For Oracle to process any SQL statement, a cursor is required. However, SQL*Mod-
ule implicitly defines a cursor for INSERT, UPDATE, and DELETE statements, as
well as SELECT statements.

However for queries that can return multiple rows, an explicit cursor must be
defined in the module or stored package to fetch all the rows. You can use static cur-
sors, or cursor variables. See "Cursors" on page 4-8 for a description of cursor vari-
ables.

See the code in "Module Language Sample Program" on page 6-10 for several exam-
ples that use explicit cursors.

Specification Files

The SQL*Module compiler generates specification files. These are text files that con-
tain declarations for the module or interface procedures that SQL*Module gener-
ates.

You must include the specification file directly in the source of your host applica-
tion. The name of the specification file is the base name of the Module Language
output file for SQL*Module, with a system-specific extension. These extensions are
documented in "Specification File" on page 5-10.

4-8 SQL*Module for Ada Programmer’s Guide

Arrays as Procedure Arguments

In Ada applications, you must compile the specification file (or files) that SQL*Mod-
ule generates. You then include the specification for the module procedures or
stubs in each application that calls module procedures or stubs using the with con-
text clause.

The naming of specification files is discussed in detail in Chapter 6, “Demonstra-
tion Programs”.

Calling a Procedure

You call procedures generated by SQL*Module using the normal procedure call for-
mat of the host language. Procedures can only return values in parameters, includ-
ing the SQLCODE and SQLSTATE parameters. The generated procedures are not
functions.

Arrays as Procedure Arguments

SQL*Module supports array bind and define variables as arguments to procedures
and functions:

PROCEDURE foo (:arrnane ARRAY(n) CF type, SQOIE);

where n is the size of arrname, and type is listed in "National Language Support"
on page 4-10.

For example:

PROCEDURE sel enpno (:eno ARRAY(14) of INTEGER SQOIB);
SH ECT enpno | NTO : eno FROM enp;

Note: Host arrays are allowed in SELECT, FETCH, INSERT, UPDATE and DELETE
statements only.
Restrictions:

1. Arrays may not be specified when RPC_GENERATE=yes or
STORE_PACKAGE=yes. See "Stored Packages" on page 3-4 for more information.
See both these command-line options in Chapter 5, “Running SQL*Module”.

2. The maximum dimension of an array is 32000

3. SQL*Module does not allow multi-dimension arrays.

Developing the Ada Application 4-9

National Language Support

National Language Support

Not all writing systems can be represented using the 7-bit or 8-bit ASCII character
set. Some languages require multi-byte character sets. Also, countries have differ-
ing ways of punctuating numbers, and representing dates and currency symbols.

Oracle provides National Language Support (NLS), which lets you process single-
byte and multi-byte character data and convert between character sets. It also lets
your applications run in different language environments. With NLS, number and
date formats adapt automatically to the language conventions specified for a user
session. Thus, NLS allows users around the world to interact with Oracle in their

native languages.

You control the operation of language-dependent features by specifying various
NLS parameters. Default values for these parameters can be set in the Oracle initial-
ization file. The following table shows what each NLS parameter specifies:

NLS Parameter Specifies ...

NLS_LANGUAGE language-dependent conven-
tions

NLS_TERRITORY territory-dependent conven-
tions

NLS DATE_FORMAT date format

NLS_DATE_LANGUAGE language for day and month
names

NLS_NUMERIC_CHARACTERS decimal character and group
separator

NLS_CURRENCY local currency symbol

NLS_ISO_CURRENCY I1SO currency symbol

NLS_SORT sort sequence

The main parameters are NLS_ LANGUAGE and NLS_TERRITORY.
NLS_LANGUAGE specifies the default values for language-dependent features,
which include

« language for Server messages
« language for day and month names

] sort sequence

4-10 SQL*Module for Ada Programmer’s Guide

National Language Support

NLS_TERRITORY specifies the default values for territory-dependent features,
which include

« date format

« decimal character

= group separator

« local currency symbol
« ISO currency symbol

You can control the operation of language-dependent NLS features for a user ses-
sion by specifying the parameter NLS_LANG as follows:

NS LANG = < anguage> <territory> <character set>

where language specifies the value of NLS_LANGUAGE for the user session, terri-
tory specifies the value of NLS_TERRITORY, and character set specifies the encoding
scheme used for the terminal. An encoding scheme (usually called a character set or
code page) is a range of numeric codes that corresponds to the set of characters a
terminal can display. It also includes codes that control communication with the ter-
minal.

You define NLS_LANG as an environment variable (or the equivalent on your sys-
tem). For example, on UNIX using the C shell, you might define NLS_LANG as fol-
lows:

setenv NLS LANG French_Canadi an. VB8l SCB859P1

SQL*Module fully supports all the NLLS features that allow your applications to pro-
cess multilingual data stored in an Oracle8 database. For example, you can run a
SQL*Module-derived client application that interacts with a remote server, where
the client and the server are using different character sets, possibly with a different
number of bytes per character. In these contexts, remember that specification of the
lengths of string types, such as the SQL datatype CHARACTER(N), is always speci-
fied in bytes, not characters.

You can even pass NLS parameters to the TO_CHAR, TO_DATE, and
TO_NUMBER functions. For more information about NLS, see the Oracle8 Applica-
tion Developer’s Guide.

Developing the Ada Application 4-11

National Language Support

4-12 SQL*Module for Ada Programmer’s Guide

5

Running SQL*Module

This chapter describes

SQL*Module Input and Output

Invoking SQL*Module

Case Sensitivity in Program Names, Option Names, and Values
How to Specify Command-Line Options

Input Files

Output Files

Command-Line Options

Compiling and Linking

Running SQL*Module 5-1

SQL*Module Input and Output

SQL*Module Input and Output

This section reviews the different ways that you can use the SQL*Module compiler.
This material was discussed in detail in Chapter 2, “Module Language” and
Chapter 3, “Accessing Stored Procedures”; here it is presented in terms of the ways
that you run the compiler, using the command-line options to get different
SQL*Module functionality.

Input sources
Input to the compiler can come from two sources:

« module files written according to the SQL standard Module Language specifica-
tions, as described in Chapter 2 of this Guide

« stored packages and procedures in an Oracle database (see Chapter 3)

You use a standard text editor to create module files, just as you would create a
host language application.

Stored procedures can be stand-alone procedures, or they can be encapsulated in a
stored package. You normally create PL/SQL code for stored packages and proce-
dures using a text editor, and then store it in a database using an Oracle tool such
as SQL*Plus. You can also use SQL*Module to encapsulate Module Language pro-
cedures in a package, and store them in the database.

Output Files

The output source file is always the host language code file that SQL*Module gener-
ates from the input source. There are also other output files, such as the listing file
and specification file. You can run SQL*Module and generate no output source file,
for example if you just want to store procedures in the database from a Module Lan-
guage input file, or you just want to generate a listing file.

You compile output source files using the host language compiler, and link the
resulting object files together with the host application’s object files to produce the
executable program. See the section "Compiling and Linking" on page 5-22 for
more information about handling output files.

Note: While many of the examples in this chapter assume, for simplicity, that the
input and output files are in the same directory, this does not have to be the case.
Input and output files can be in separate directories, and you can use the various
NAME options to specify the source of input, or the destination of output.

5-2 SQL*Module for Ada Programmer’s Guide

SQL*Module Input and Output

Determining the Input Source

There are three sources of input for SQL*Module, and four ways to determine the
input:

1. When compiling a module written in Module Language, the source is the Mod-
ule Language code file.

2. When generating RPC stubs from stored procedures, there is no input file. The
source of the input is the stored package in the database.

3. When creating a stored package in the database from a Module Language mod-
ule file, the source is the Module Language file.

4. You can combine methods 1 and 2 in one invocation of SQL*Module. A pack-
age in the database is created from the Module Language module file, and an
output file that contains RPC stubs to call the database package procedures is
produced.

Methods 1 and 4 are the most common ways to use SQL*Module. Method 1 is
described in Chapter 2, “Module Language” of this Guide, method 2 in Chapter 3,
“Accessing Stored Procedures”. Methods 3 and 4 are much more specialized, and
are described in Chapter 3.

STORE_PACKAGE
Determines whether SQL*Module should store a package in the database.
RPC_GENERATE

Determines whether an interface procedure output file is produced. When you
specify the option RPC_GENERATE as YES, the option PNAME specifies the name
of the package in the database that provides the input source.

Table 5-1 shows the how the command-line option values for STORE_PACKAGE
and RPC_GENERATE, together with the values for INAME and PNAME, deter-
mine the input source.

Running SQL*Module 5-3

Invoking SQL*Module

Table 5-1 Interpreting Command-line Options
Input Source Options

STORE_ RPC_ INAME PNAME

PACKAGE |GENERATE
(1) Module =NO =NO Module file name |N/A
source file
(2) Procedure |=NO =YES N/A Stored package or pro-
already cedure name
stored in
database
(3) Module =YES =NO Module file name | Database package
file to create name (if not specified,
SPs in data- becomes same as mod-
base ule filename)
(4) Store mod- | =YES =YES Module file name | Database package
ule proce- name (if not specified,
dures, then becomes same as mod-
do (2) ule filename)

See the section "Command-Line Options" on page 5-11 for a detailed description of
these options. See the section "Compiling and Linking" on page 5-22, for examples
that show you how you can use these options. For an explanation of the default file
naming conventions, see the sections "Input Files" on page 5-8 and "Output Files"
on page 5-9.

Invoking SQL*Module

You can run the SQL*Module compiler interactively from the operating system
command line, from a command in a batch file, or, for some operating systems, a
makefile. The way you invoke the compiler can be system dependent. See your sys-
tem-specific Oracle documentation to find out the location on your system of the
compiler and associated files, such as configuration files and the SQL runtime
library.

Running the Compiler

The name of the SQL*Module compiler itself is modada for Ada. The SQL*Module
compiler can be invoked from the operating system command line as follows:

nodada <option=val ue> ...

5-4 SQL*Module for Ada Programmer’s Guide

Case Sensitivity in Program Names, Option Names, and Values

where <option=value> is a command-line argument. For example, the command

nodada i nane=ny_t est 1. nad onane=ny_test1 nod. a useri d=nodt est

compiles the module file my_testl.mad to produce an output file called

my_testl mod.a. The username is modtest. Since in this example no password was
provided on the command line, SQL*Module prompts you for one when it starts.
SQL*Module requires a valid username and password to compile a Module Lan-
guage file. The objects referenced in the cursors and procedures in the Module file
must be available in the schema named (MODTEST in this example) when you run
SQL*Module.

When you use SQL*Module to generate interface procedure files that call stored
procedures in the database, you must specify the same USERID as the schema that
owns the stored procedures.

Case Sensitivity in Program Names, Option Names, and Values

For operating systems that are case sensitive, such as UNIX, the names of the exe-
cutables are normally in lowercase. For all systems, the names of the options and
their values are not case sensitive. In this Guide, the option name is in uppercase,
and the value is in lower case. However, when the option value is a filename, and
your operating system is case-sensitive, you must enter the filename using the cor-
rect combination of upper and lowercase

Listing Options and Default Values

If you provide no command-line arguments, or the only argument is '?’, the com-
piler prints a list of all the options available, with their current default values. For
example, the command

nodada ?
runs the SQL*Module compiler for Ada and lists each option with its default value.
See "Default Values" on page 5-7 for information on what determines the defaults.

(Be sure to escape the '?” using "\" if you are running on a UNIX system and you
are using the C shell.)

If you just want to see the default value for a single option, you can issue the com-
mand:

nodada <CPTI ON>=?

For example, the command

Running SQL*Module 5-5

How to Specify Command-Line Options

nodada QUTPUT=?

shows the default values for the OUTPUT option for the SQL*Module compiler for
Ada.

nodada

produces a short help display.

A complete description of each option is given later in this chapter.

How to Specify Command-Line Options

Value Lists

The value of an option is a string literal, which can represent text or numeric val-
ues. For example, for the option

| NAME=ny _t est

the value is a string literal that specifies a filename. But for the option
MAXLI TERAL=400

the value is numeric.

Some options take Boolean values, and these may be represented with the strings
“yes” or “no”, or “true” or “false” (in upper or lowercase). For example:

STCRE_PACKAGE=YES

is equivalent to

STCRE PACKAGE=t rue

both of which mean that the results of the compilation should be stored as a pack-
age in the database.

The option value is always separated from the option name by an equals sign, with
no whitespace between the name or the value and the equals sign.

Some options can take multiple values. Multiple option values are specified in a
list. The list is a comma-separated list of values with surrounding parentheses. Do
not put any whitespace in the list. The following option specifies that SQL*Module
should generate source code and specification output files, but not listing files:

QUTPUT=(OCDE, SPEQ FI CATI QY

5-6 SQL*Module for Ada Programmer’s Guide

How to Specify Command-Line Options

Default Values

A value list completely supersedes the value list specified by a previous default or
option value list. For example, if the system configuration file contains the line

QUTPUT=(GCDE, SPEQ FI CATI ON LI ST)

and there is no user configuration file, and the command line contains the option
QUTPUT=(OCIE, LI ST)

then the value of OUTPUT is (CODE,LIST). See the section "Configuration Files" on
page 5-8 for how default values are determined.

If a list-valued option is specified with a single value, that is not in parentheses, the
single value is added to the current default list. For example, if the system configura-
tion file contains the line

QUTPUT=(GCDE, SPEA FI CATI AN
there is no user configuration file that has an OUTPUT= option, and the command
line contains the option

QUTPUT=LI ST
then “LIST” is appended to the default list, so the value of OUTPUT is
(CODE,SPECIFICATION,LIST).

Note: If NONE is a member of the OUTPUT list, then nothing would be generated,
regardless of other entries in the list.

Most of the options have default values. Three things determine the default value:
« Values built into the SQL*Module compiler

« Values set in the system configuration file

« Values set in a user configuration file

For example, the option MAXLITERAL specifies the maximum length of strings
generated by SQL*Module. The built-in SQL*Module default value for this option
is 255 bytes. However, if MAXLITERAL=512 is specified in the system configura-
tion file, the default now becomes 512. The user configuration file could set it to yet
another value, which then overrides the system configuration value. Finally, if this
option is set on the command line, that value will take precedence over the
SQL*Module default, the system configuration file specification, and the user con-

Running SQL*Module 5-7

Configuration Files

figuration file specification. See “Configuration Files” below for more information
about these files.

Some options, such as USERID, do not have a built-in default value. The built-in
default values for options that have them are listed in the section "Command-Line
Options" on page 5-11.

Configuration Files

A configuration file is a text file that contains SQL*Module options. Each record or
line in the file contains one option, with its associated value or list of values. For
example, a configuration file might contain the lines

Bl NDI NG=LATE
USER D=MIDTEST

to set defaults for the BINDING and USERID options.

Note: You cannot put comments in a configuration file; there is no character or char-
acter combination that lets you comment out a line.

There is one system-wide configuration file associated with each system. The sys-
tem configuration file is usually maintained by the project or group leader, or the
database administrator. The location of this file is system specific. For more infor-
mation, see your project leader, or your system-specific Oracle documentation.

If there is no system configuration file, the compiler prints a warning message, but
compilation continues normally.

In addition, each SQL*Module user can have one or more user (or local) configura-
tion files. To activate the user configuration file, its name and path must be speci-
fied using the CONFIG= command-line option. See "Command-Line Options" on
page 5-11. The user configuration file is optional.

The CONFIG= option never specifies the system configuration file. The location of
the system configuration file is built into the SQL*Module compiler, and can vary
from system to system.

Input Files

A SQL*Module input file is a text file containing Module Language statements. You
specify the input filename using the INAME= command-line option.

Input files have default file extensions, also referred to as filetypes in some operating
systems. However, not all operating systems support file extensions. If your system
does not support file extensions, the last few characters of the filename might serve

5-8 SQL*Module for Ada Programmer’s Guide

Output Files

as the extension. Refer to your operating system documentation and to your sys-
tem-specific Oracle documentation for more information about filenames and file
extensions.

If you do not specify an extension for the module input file, and your operating sys-
tem uses file extensions, the compiler assumes a default extension, .mad.

Output Files

SQL*Module can generate four types of output files:

= asource code file

« aspecification (or header) file

« alisting file

« aPL/SQL source file for a stored procedure or a package

Source code files contain generated code in the host language. modada generates
Ada code. Specification or header files contain declarations for the procedures in
the code files

Source Code Output File

This file contains the host language code produced by the compiler. It is a source
file in the host language, and you must compile it using your host language com-
piler to produce an object module. The object modules are in turn linked with the
application’s object modules and the SQL runtime library to form the executable

program.

Note: Oracle recommends that you nhame output files explicitly, either in a configu-
ration file or on the command line.

Default File Names for Ada

If you do not specify an output code filename when you run modada, the output
code filename defaults to a system-specific name. For example, on Sun worksta-
tions running the Solaris 1.0 Sun Ada compiler, the command

nodada i nane=ny_t est 1. nad

generates an output code file named my_testl.a. On other platforms, a different
name might be generated. See your system-specific Oracle documentation for com-
plete information.

Running SQL*Module 5-9

Output Files

Specification File

By default, modada generates a specification or header file. The specification file
contains declarations for the procedures in the generated output file.

Default Specification Filenames for Ada

The default specification filename is the name of the input file, or the package
name, followed by a system-dependent appendix, followed by a system-dependent
file extension. For example, on a Sun workstation running Solaris 1.0, the command

nodada i nane=ny_t est 1. nad

generates a default specification output file with the name my_test1s.a. This is the
value of iname minus the extension, with “s” appended.

On other platforms, the filename appendix and the filename extension might be dif-
ferent. See your system-specific Oracle documentation for complete information.

See Chapter 6, “Demonstration Programs” for language-dependent information
about the content of specification files.

Listing File
If OUTPUT=LIST, SQL*Module produces a listing of the Module Language source
code, with errors, if any, flagged. Error codes and messages are interspersed in the
list file, at the point where the SQL*Module parser first detected the error. The line
length in the listing file defaults to 255 characters. If no end-of-line character is
received before 255 characters are received, a system-specific end-of-line character
or character sequence is output.

PL/SQL Source Files

When you are generating interface procedure files from a stored package or proce-
dure, and you specify the option OUTPUT=PACKAGE, SQL*Module generates
PL/SQL source code output files. If the output is from a package, two files are gen-
erated. One file has the default file extension .pks, and contains the package specifi-
cation code. The second file has the default extension .pkb, and contains the
package body code. See the PL/SQL User’s Guide and Reference for more information
on package specifications and package bodies.

Avoid Default Output Filenames

Use the ONAME and SNAME options to generate non-default output filenames.
They are described below.

5-10 SQL*Module for Ada Programmer’s Guide

Command-Line Options

Oracle strongly recommends that you use these options, rather than letting the
output filenames be generated by default.

Command-Line Options

When an option is entered on the command line, its value overrides SQL*Module
defaults, any values specified in a configuration file, or values specified in a mod-
ule file (for example, the AUTHORIZATION clause). The order of precedence is

« command-line options

« statements in the module file preamble
« user configuration file options

« system configuration file options

« default options built into the compiler
The format of a command-line option is:

CPTI ON_ NAME=VALLE
There should be no whitespace around the equals sign. For example:

nodada | NAME=ny_app3_nod ONAME=ny_app3_nod SNAME=ny_app3_pkg
compiles the input file my_app3_mod.mad to produce an output file named
my_app3_mod.a, and a specification file named my_app3_mod_pkgs.a.

Note: The actual filename extensions are system specific. See your system-specific
Oracle documentation for more information.

If the option can take a list of values and more than one value is being supplied, a
comma-separated list of values is placed inside parentheses. For example:

QUTPUT=(GCDE, SPEQ FI CATI QN

There should be no whitespace anywhere in the list.

The names as well as arguments of the command-line options can be abbreviated.
Instead of

QUTPUT=SPEQ Fl CATI ON

you could enter
QUT=SPEC

or even

Running SQL*Module 5-11

Command-Line Options

QkESP

since neither “OU”, “SPEC”, nor “SP” is ambiguous. Filenames and package names

cannot be abbreviated.

The command-line options, together with their default values, are listed in

Table 5-2, and are described in the remainder of this chapter.

Table 5-2 The Command-line options

Option Name Option Purpose Values
AUTO_CONNECT Connect on first SQL YES | NO
statement if not already
connected
BINDING Early or late binding? EARLY | LATE
CONFIG Name of a user <filename>
configuration file
ERRORS Destination of error YES | NO
messages
FIPS Turns on FIPS flagger YES | NO
INAME Name of input file <filename>
LNAME Name of listing file <filename>
LTYPE Kind of listing file NONE | SHORT | LONG
MAPPING Resolves overloaded ()| OVERLOAD
procedure names for the
default WITH
INTERFACE
PROCEDURE clause
MAXLITERAL Maximum length of string {10..1024
literal in generated host
language code
ONAME Name of source code <filename>
output file
OUTPUT Kinds of output files One of, or list of two or more of (NONE |
generated CODE | SPECIFICATION | LIST | PACKAGE
PNAME Name of package in the |<package_name>
database

5-12 SQL*Module for Ada Programmer’s Guide

Command-Line Options

Option Name Option Purpose Values

RPC_GENERATE Generate stubs from YES | NO
stored package or
procedure?

SELECT_ERROR Should a query returning [YES | NO
more than one row
generate a runtime
error?

SNAME Name of specification <filename>
output file

SQLCHECK Kind of compile-time NONE | SYNTAX | SEMANTICS
checking done

STORE_PACKAGE Store module as a YES | NO
package in the database

USERID Username and password [<string>

AUTO_CONNECT

Values

{YES | NO}
Default Value
NO

Meaning

If AUTO_CONNECT=YES, and you are not already connected to a database, when
SQLLIB processes the first executable SQL statement, it attempts to connect using

the userid

CPS$<user nane>

where username is your current operating system user or task name and OPS$user-
name is a valid Oracle userid.

When AUTO_CONNECT=NO, you must use the CONNECT statement to connect

to Oracle.

Can be entered only on the command line or in a configuration file.

Running SQL*Module 5-13

Command-Line Options

BINDING
Values
{EARLY | LATE}
Default Value
EARLY
Meaning
The BINDING option is used when generating interface procedure files, that is,
when RPC_GENERATE=YES. Early binding means that a time stamp is derived
from the time of compilation of the stored procedure, and the time stamp is saved
in the interface procedures file.
When a stored procedure is called through a stub (specified in the interface proce-
dures file), if the current time stamp on the procedure in the database is later than
that specified in the stub, the message “time stamp of <stored procedure name>
has been changed” (ORA-04062) is returned.
The stored package must have WITH INTERFACE clauses specified for each proce-
dure when RPC_GENERATE=YES, regardless of whether you choose early or late
binding using the BINDING option. See the section "Early and Late Binding" on
page 3-7 for more information.
CONFIG
Values
<filename>
Default VValue
None.
Meaning
Specifies the name of a user configuration file that contains options. The user config-
uration file is a text file. Each option in the file must be on a separate line (record).
ERRORS
Values
{YES | NO}

5-14 SQL*Module for Ada Programmer’s Guide

Command-Line Options

FIPS

INAME

Default Value
YES
Meaning

Specifies the destination for error message output. If ERRORS=YES, the output is
both to the terminal and to the listing (.lis) file. If ERRORS=NO, error messages are
sent only to the listing file.

Values

{YES | NO}
Default Value
NO

Meaning

Specifies whether instances of non-compliance with the ANSI/ISO SQL standards
will be flagged at compile time. If FIPS=YES, Oracle extensions to standard Module
Language and standard SQL, as well as use of standard constructs in ways that vio-
late the SQL standard format or syntax rules, are flagged by the FIPS flagger.

Values
<filename>
Default Value
None.
Meaning

Specifies the name of the input file. If the specified filename does not contain an
extension, the compiler supplies the default extension for the host language. Only
one input file is allowed. If more than one INAME option is specified, the last one
prevails, and the earlier ones are ignored.

If STORE_PACKAGE=NO and the PNAME option is specified, the INAME option
cannot be specified. In this case, there is no input file, since the input comes from
the stored package. If INAME is specified under these circumstances, SQL*Module
generates a warning message and continues, if possible.

Running SQL*Module 5-15

Command-Line Options

LNAME
Values
<filename>
Default Value
The base name of the listing file first defaults to the base name of INAME or, if
INAME is not specified, it defaults to the name of the package specified in the
PNAME option. The default file extension is .lis.
Meaning
Specifies the name of the listing file. This option is valid only if the LTYPE option is
not NONE.

LTYPE
Values
{NONE | SHORT | LONG}
Default VValue
LONG
Meaning
Specifies the listing type. The OUTPUT option list must contain the VALUE LIST,
otherwise this option has no effect.
If the LTYPE value is NONE, no list file is generated, regardless of the setting of the
OUTPUT option. If the LTYPE value is SHORT, the list file contains no code, only
error messages. LTYPE=LONG generates a complete listing file, with errors and
code.
Note: When INAME is specified, the listing file shows Module Language code, not
the generated host language code. When compiling an interface procedure, the list-
ing output contains only error messages, regardless of the LTYPE specification. See
the OUTPUT option for more information on how to generate PL/SQL output
source.

MAPPING
Values

() | OVERLOAD

5-16 SQL*Module for Ada Programmer’s Guide

Command-Line Options

MAXLITERAL

ONAME

where () indicates an empty string.
Default VValue

Empty string.

Meaning

The MAPPING option is used when generating prototypes for the default WITH
INTERFACE PROCEDURE clause. See "The Default WITH INTERFACE Clause”
on page 3-16 for more information.

When MAPPING=0OVERLOAD, SQL*Module resolves overloaded stored proce-
dure and function names when generating stubs. It does this by prefixing MODn_
to the second and subsequent procedure names, where n starts with 2, and incre-
ments by 1 until all stubs for all overloaded procedures of that name have been
resolved.

Values

Numeric literal, range 10 to 1024 bytes
Default Value

255 bytes

Meaning

Specifies the maximum length of string literals generated by the SQL*Module com-
piler, so that host language compiler limits are not exceeded. For example, if your
system’s compiler cannot handle string literals longer than 512 bytes, specify MAX-
LITERAL=512 in the system configuration file.

Values
<filename>
Default Value

The base name of the output file first defaults to the base name of INAME. If
INAME is not specified, then ONAME defaults to the name of the package speci-
fied in the PNAME option, if present. The default file extension is system depen-
dent, but is generally .a. The default output directory is the current directory.

Meaning

Running SQL*Module 5-17

Command-Line Options

Specifies the name of the code output file. Whether an output file is actually gener-
ated depends on the values of the OUTPUT option. The OUTPUT list must contain
the value CODE.

OUTPUT

Values

Any one or more of CODE, LIST, NONE, PACKAGE, SPECIFICATION
Default VValues

CODE, SPECIFICATION

Meaning

Specifies what output files SQL*Module generates. The values are
CODE

An interface procedures file is generated.

LIST

A listing file is generated. See the LNAME and LTYPE options for more informa-
tion.

NONE

No files are generated. This option is used to do syntactic and semantic checking of
the input file, as error output is always generated.

PACKAGE

PL/SQL source files are generated. These files contain the PL/SQL package gener-
ated by SQL*Module. The default base filename is the same as the name specified
in either the INAME or the PNAME option. If both are specified, the default is
taken from INAME.

The default extensions are .pks (package specification) and .pkb (package body).
SPECIFICATION

A specification file containing procedure declarations is generated. The filename
extension is language specific. See "Output Files" on page 5-2 for more information.

Note: If the value NONE is included in the list, then no output of any kind is gener-
ated, regardless of any other values that might be in the list.

5-18 SQL*Module for Ada Programmer’s Guide

Command-Line Options

PNAME

Values

Name of a stored package or a stand-alone stored procedure in the Oracle database,
or the name to be given to a stored package to be created in the database when
STORE_PACKAGE=YES.

Default VValue
For Output (when RPC_GENERATE=YES)

There is no default value. You must specify the name of a package in the database.
However, you can specify a complete pathname, including an extension, to serve as
a default for ONAME. In this case, the directory hierarchy and the filename exten-
sion are ignored, and the basename is taken as the package name for database
lookup.

For Input (when STORE_PACKAGE=YES)

The default value is the module name in the MODULE clause of the input file. If
there is no module name, the default is taken from the INAME value.

Meaning

Specifies the name of the package stored in the database (if
STORE_PACKAGE=NO), or the name of a package to be created by SQL*Module
(if STORE_PACKAGE=YES). The name must be a valid database object name.

RPC_GENERATE

Values

{YES |NO}
Default Value
NO

Meaning

Specifies whether SQL*Module should produce an interface procedures file so that
a host program can call stored procedures. You can use this option with
STORE_PACKAGE=NO and PNAME=<package_name> to generate interface pro-
cedures for stand-alone or packaged procedures that are already stored in the data-
base. You can also use this option with INAME=<filename> and
STORE_PACKAGE=YES to store procedures in a module file in the database, and
generate an interface procedures file to access them.

Running SQL*Module 5-19

Command-Line Options

SELECT_ERROR

SNAME

Values

{YES | NO}
Default Value
YES
Meaning

Specifies whether an error is generated at runtime when a SELECT or FETCH state-
ment returns more than one row.

Values
<filename>
Default VValue

The base name of the input file, if specified, plus the appropriate extension for a
specification file for the host language. For Ada, a system-specific filename addition
and extension is used, such as ora_dcl for VAX/OPEN VMS Ada, or *s.a for Verdix
Ada.

Meaning

Specifies the name of the specification or header file. If INAME is not specified,
SNAME must be specified to get a specification file. The file is not generated if the
OUTPUT option does not include SPECIFICATION in its list of values.

STORE_PACKAGE

Values

{YES | NO}
Default Value
NO

Meaning

If STORE_PACKAGE=YES, SQL*Module compiles the module file specified in the
mandatory INAME option, and stores the packaged procedures in the database
schema specified by the USERID option. The name of the package is specified by
the PNAME option.

5-20 SQL*Module for Ada Programmer’s Guide

Command-Line Options

SQLCHECK

USERID

If you do not specify a PNAME option, the default package name becomes the
name of the module, as specified in the MODULE clause of the module file. If nei-
ther the PNAME option nor the MODULE clause is specified, the package name is
the base name (omitting any path specification or file extension) of the input file
specified in the INAME option.

Note: When STORE_PACKAGE=YES, SQL*Module performs a CREATE OR
REPLACE PACKAGE statement. This statement overwrites, without any warning
any package of that name in the schema.

Values

{NONE | SYNTAX | SEMANTICS}
Default Value

SEMANTICS

Meaning

Determines the way SQL*Module processes the input file when INAME is speci-
fied. This option has no meaning if there is no input file.

NONE

SQL*Module processes the command line, issues any error messages produced by
configuration file or command-line options, then exits without compiling any input
and does not produce any output files.

SYNTAX

SQL*Module compiles the input file specified in the INAME option, using its own
SQL parser. Errors detected are flagged, but no source code, specification, or listing
output files are produced.

SEMANTICS

The input file is compiled on the server side, all syntactic and semantic errors are
flagged, and all appropriate output files are generated.

Values
<string>

Default Value

Running SQL*Module 5-21

Compiling and Linking

None
Meaning

Specifies an Oracle username and, optionally, a password and a database to con-
nect to. The syntax of this option is

USER D=USER NAMH / PASSWIRD] [@ATABASE NAMVE]
SQL*Module must be able to connect to a server when compiling an input file, to

parse the SQL and PL/SQL statements, do syntactic and semantic checking, and to
store packages if required. If the password is omitted, SQL*Module prompts for
one. If a database is not specified, the default (local) database for the user is used.

If you do not specify the USERID option, the default becomes the user name (and
possibly the password) specified in the AUTHORIZATION clause of the Module
Language input file, or the USERID value specified in a configuration file.

Note: SQL*Module always prompts for a password if one has not been supplied in
a configuration file, in an AUTHORIZATION clause in the module file, or on the
command line. So, there is no need to hard code passwords into text files.

Compiling and Linking
To produce an executable program, you must compile source code output files that
SQL*Module generates, then link these together with the compiled object files of
any sources that call modules or interface procedures, with SQLLIB, and with other
Oracle libraries. The details are necessarily both system and language dependent.
The tables in the next three sections show a few examples.

An Example (Module Language)

There is a Module Language file to be compiled. No stored database packages are
involved. The steps to take are shown in Table 5-3.

5-22 SQL*Module for Ada Programmer’s Guide

Compiling and Linking

Note: This example is specific to VAX/OPEN VMS. For other Ada implementa-

tions, using a linker for all Ada files might be required.

Table 5-3 Development Scenario

Step | File Name How Developed Action to Take
1 tst_app_drv.ada by Ada developer compile into Ada
library using host
Ada compiler
2 tst_app_mod.mad by SQL developer compile using
SQL*Module
3 tst_app_mod.ora_dd |generated by compile into Ada
SQL*module in Step 2 | library using host
Ada compiler
4 tst_app_mod.ada generated by module compile into Ada
from Step 2 library using host
Ada compiler; make
sure to with this pack-
age in tst_app_drv.ada
5 tst_app_drv.o extracted from Adalib | link (with SQLLIB)
6 tst_app_drv linked from step 5 run and test

Running SQL*Module 5-23

Compiling and Linking

5-24 SQL*Module for Ada Programmer’s Guide

6

Demonstration Programs

This chapter provides information about using SQL*Module host applications writ-
ten in Ada. This chapter also includes sample programs that demonstrate how you
can use SQL*Module with an Ada application.

Topics covered are:
« The SQL_STANDARD Package
« Sample Applications

Demonstration Programs 6-1

The SQL_STANDARD Package

The SQL_STANDARD Package

SQLCODE

SQLSTATE

You must use the datatypes defined in the supplied SQL_STANDARD package.The
SQL_STANDARD package defines the packages, Ada bindings to the SQL
datatypes, and the subtypes that are used for SQL*Module with Ada. You must
compile the supplied SQL_STANDARD package into your Ada library, and with
this package in each program unit that calls procedures generated from Module
Language source, or that calls interface procedures.

The SQL_STANDARD package is system specific. See your system-specific Oracle
documentation for the location of this file on your system.

The standard type of the SQLCODE parameter for Ada is
SQL_STANDARD.SQLCODE_TYPE.

The standard type of the SQLSTATE parameter for Ada is
SQL_STANDARD.SQLSTATE_TYPE. It is a five-character string.

Sample Programs

The Module Language sample programs are based on an example database for a
small college. This section demonstrates the tables that are used in the application,
and a module that contains cursors and procedures that query and update the
tables.

The database contains tables that maintain records about
« students

« COurses

« classes (instances of courses)

« enrollment in classes

« instructors

« departments

The SQL statements below are used to create the tables used in the demonstration
application. You can create the sample database, and fill it with some preliminary
data, by using SQL*Plus or SQL*DBA to execute these scripts.

6-2 SQL*Module for Ada Programmer’s Guide

Sample Programs

These scripts, and all other sample code files, are shipped with SQL*Module. They
are in the demo directory on your system.

Sample Tables

The tables and sequence number generators are created by the MKTABLES.SQL
script. At the end of this script, five other scripts are called to partially populate the
tables. These five scripts are listed following MKTABLES.SQL.

MKTABLES.SQL

REM QOeate all tables for the sanpl e col | ege database application.

REM Drop existing tables
REM Renove REMs next 6 |ines when runni ng under SQ*Pl us

REM OLEAR SCREEN

REM Pronpt WVARNING ! About to recreate the SQ*Mdul e exanpl e tabl es.
REMPronpt Al previously entered data will be |ost.

REMPronpt |If you really want to do this, type ENTER or Return.
REMPronpt H se, type your CANCEL (INTR character to exit

REM Pause this script now

REM Pronpt Droppi ng tabl es. ..

DRCP TABLE st udents CASCACE QONSTRAI NTS;
DRCP TABLE instructors CASCADE QONSTRAI NTS,
DRCP TABLE cour ses CASCADE QONSTRAI NTS,
DRCP TABLE cl asses CASCADE GONSTRAI NTS,
DRCP TABLE enrol | nent CASCADE QONSTRAI NTS,
CRCP TABLE departnents CASCADE GONSTRA NTS,

DRCP SEQUENCE st udent _i d_seq;
DRCP SEQUENCE instructor_id_seq;
DRCP SEQUENCE cl ass_nunber _seq;
CRCP SEQUENCE enrol | nent _seq;

CREATE SEQUENCE student _i d_seq START WTH 1000;
CREATE SEQUENCE instructor_id_seq START WTH 100000;
CREATE SEQUENCE cl ass_nunber _seq START WTH 100;
CREATE SEQUENCE enrol | nent _seq START WTH 100;

REMPronpt Greating tables...

CREATE TABLE departnents (nane VARCHAR2(16) NOT NULL,

Demonstration Programs 6-3

Sample Programs

id NUMBER(6) PR MARY KEY,
| ocati on NUMBER 4) ,
chai r per son NUMBER 6) ,
budget NUMBER(9, 2)
);

CREATE TABLE instructors (| ast_nane VARCHAR2(15) NOT NULL,
first_nane VARCHAR2(15) NOT NULL,
m VARCHARZ(3),
id NUMBER(6) PR MARY KEY,
hire _date DATE,
dept NUVBER 6)
NOT NULL REFERENCES depart nent s(i d),
sal ary NUMBER(9, 2),
rank VARCHAR2(20)
);

CREATE TABLE students (last _nane VARCHAR2(15) N